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2010 final exam solutions

The direction of most rapid increase is given by the gradient V f = (f,, f,, f.), where
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at the given point, while a similar computation gives f, = 1 and f, = —1/2. To find
a unit vector u in the direction of the gradient, we simply divide by its length:
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Since u is a unit vector in the direction of most rapid increase, —w is a unit vector in
the direction of most rapid decrease.

The rate of change in the direction of +u is equal to £||V f|| = £1v/21, respectively.

Let us first simplify the given equation and write
1
z= f(z,y) = 5 In(22* + y*) — In 3.

Differentiating with respect to x, we then find that
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at the given point, while a similar computation gives f, = —1/9. Noting that
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we conclude that the equation of the tangent plane at the given point is
dr —y—9
s= 21 (=) f2 1) (1) =
Write the equation of the tangent plane in the form
Yp=4dr—-—y—9 =— 4dor—y—92=09.
The normal line passes through (2, —1,0) with direction (4, —1, —9), so its equation is

T =2+ 4t, y=—1—1t, z = —9t.
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The surface lies above the rectangle R, so its projection onto the xy-plane is just R.
Solving the given equation for z, one finds that
P =81y = =812

In particular, we have z = f(z,y) for some function f and we need to integrate

dS =1+ f2+ f2 dxdy

over the region R. Since f(z,y) = /8 — y? by above, we get
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and so the area of the surface is
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To compute the rightmost integral, we use an analogue of polar coordinates:

§—y'=u’ = ¢y +u’=38
— y=+/8sinb, u = /8cosh.

Since y = —2 when sinf = —1/4/2 and y = 2 when sinf = 1/v/2, we get

2 w/4 /4
Area = / 2v8 dy 2v8 - V8cosfdf / 2V/8dO = 27V/2.
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The given line integral is path-independent because

—(224+5y+3), = —-2=(3z -2y +4),.

A potential function ¢ is a function that satisfies the equations
O = 3x — 2y + 4, ¢y = —2x — dy — 3.

Integrating the first equation with respect to = gives

2

3
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and we may similarly integrate the second equation to get
2
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Thus, one can always take ¢(z,y) = 322 + 4o — 2y — 3y — 2xy.
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According to the fundamental theorem, the value of the integral is
#(1,0) — p(—1,4) = 11/2 — (—93/2) = 52.
Spherical coordinates are defined by the equations

x = psin¢cosb, y = psin¢sin, 2 = pCos .

The volume of a ball of radius R is given by the triple integral

2r pm PR
Volume = / / / p*sin ¢ dp de df
o Jo Jo

27 T p3 R

= / / [—] sin ¢ do df
0 o L3

R3 [? ArR?

=5 Oﬂ[—cosqﬁ}ZdG: 5

To find the mass of the solid between the two spheres, we proceed similarly to get
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Applying the Laplace transform to both sides gives
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and we can rearrange terms to write this equation as
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Next, we divide by s? + 4 and use partial fractions to find that
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Using this fact and our table of Laplace transforms, we conclude that
y(t) = cos(2t) + u(t — m) — u(t — 7) cos(2t — 2mw) — 2u(t — 37) sin(2t — 67)
= cos(2t) + u(t — m) — u(t — ) cos(2t) — 2u(t — 3m) sin(2t).



6b. The input function refers to the right hand side of the given equation. In this case, it
is 0 when ¢t < 7, it is 4 when 7 < t # 37 and it is minus infinity when ¢ = 37. As for
the solution we found in part (a), this can be written in the form

cos(2t) if t<m
y(t) = 1 if m<t<3m
1 — 2sin(2t) if t>3m

A sketch of the graph of this function appears in the figure below.
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