Lecture 28, December 7

• Laplace transform. Some of its main properties are listed in the following table.

Function	Laplace transform	Function	Laplace transform
f(t)	F(s)	t^n	$n!/s^{n+1}$
e^{kt}	1/(s-k)	$\sin(kt)$	$k/(s^2+k^2)$
$e^{kt}f(t)$	F(s-k)	u(t-k)f(t-k)	$e^{-ks}F(s)$

......

Example 1. We compute $\mathcal{L}(t^2e^{4t})$. Ignoring the exponential factor, we find that

$$\mathscr{L}(t^2) = \frac{2!}{s^3} = \frac{2}{s^3}.$$

If we now include the exponential factor e^{4t} , then s becomes s-4 and we get

$$\mathcal{L}(t^2 e^{4t}) = \frac{2}{(s-4)^3}.$$

Example 2. We compute $\mathscr{L}^{-1}\left(\frac{e^{-2s}}{s^2-5s+6}\right)$. First, we use partial fractions to write

$$\frac{1}{s^2 - 5s + 6} = \frac{1}{(s - 3)(s - 2)} = \frac{1}{s - 3} - \frac{1}{s - 2}$$

and we consult our table to find that

$$\mathscr{L}^{-1}\left(\frac{1}{s^2 - 5s + 6}\right) = \mathscr{L}^{-1}\left(\frac{1}{s - 3}\right) - \mathscr{L}^{-1}\left(\frac{1}{s - 2}\right) = e^{3t} - e^{2t}.$$

If we now include the exponential factor e^{-2s} , then t becomes t-2 and we get

$$\mathcal{L}^{-1}\left(\frac{e^{-2s}}{s^2 - 5s + 6}\right) = u(t - 2) \cdot (e^{3t - 6} - e^{2t - 4}).$$

Example 3. We compute $\mathcal{L}^{-1}\left(\frac{1}{s^2-4s+5}\right)$. Since the denominator does not factor, we cannot use partial fractions in this case. Let us then complete the square to express

$$\frac{1}{s^2 - 4s + 5} = \frac{1}{s^2 - 4s + 4 + 1} = \frac{1}{(s - 2)^2 + 1}$$

as a shifted version of $\frac{1}{s^2+1}$. According to our table, this implies

$$\mathscr{L}^{-1}\left(\frac{1}{s^2+1}\right) = \sin t \quad \Longrightarrow \quad \mathscr{L}^{-1}\left(\frac{1}{s^2-4s+5}\right) = e^{2t}\sin t.$$