Lecture 25, November 30

e Stokes’ theorem. If ¢ is an oriented surface that is bounded by the curve C' and C'
is positively oriented (according to the right hand rule), then

/CF-dr = //U(curlF)-ndS.

And if o is the graph of z = f(z,y) oriented upwards, then ndS = (—f,, —f,, 1) dx dy.

Example 1. Let F = (z,z,y) and let o be the part of the paraboloid z = 1 — 22 — 3?2
that lies above the zy-plane, oriented upwards. In this case, we have

z=flr,y)=1—2>—y* = ndS=(22,2y,1)drdy

and one can easily check that
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Taking the dot product of these two vectors, we conclude that
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Example 2. Let F = (z,z,y) and let o be the part of the plane x + 2y + z = 4 that
lies in the first octant, oriented upwards. Arguing as before, we get

z=f(r,y)=4—2—-2y = mndS=(1,2,1)dxdy

as well as curl F' = (1,1, 1), so Stokes’ theorem implies that

/F dr—//1—|—2+1 dxdy—4//dxdy.

The values of x,y are determined by the projection onto the xy-plane. This is formed
by the line z + 2y = 4 (that we get when z = 0) and the coordinate axes, hence
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