
Lecture 23, November 26

• Flux. The flux of the vector field F (x, y, z) through a surface σ in R3 is

Flux =

∫∫
σ

F · n dS,

where n is the unit normal vector depending on the orientation of the surface. If σ is
the graph of z = f(x, y) oriented upwards, then n dS = ⟨−fx,−fy, 1⟩ dx dy.
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Example 1. Let F = ⟨x, y, z⟩ and let σ be the part of the paraboloid z = 1− x2 − y2

that lies above the xy-plane, oriented upwards. In this case, we have

f(x, y) = 1− x2 − y2 =⇒ n dS = ⟨2x, 2y, 1⟩ dx dy.

Taking the dot product with F = ⟨x, y, 1− x2 − y2⟩, we end up with

Flux =

∫∫
(2x2 + 2y2 + 1− x2 − y2) dx dy

=

∫∫
(x2 + y2 + 1) dx dy

and the projection of σ onto the xy-plane is the interior of the circle x2 + y2 = 1, so

Flux =

∫ 2π

0

∫ 1

0

(r2 + 1) · r dr dθ =

∫ 2π

0

∫ 1

0

(r3 + r) dr dθ

=

∫ 2π

0

[
r4

4
+

r2

2

]1
r=0

dθ =

∫ 2π

0

3

4
dθ =

3π

2
.

Example 2. Let F = ⟨1, y, 0⟩ and let σ be the part of the plane x + y + z = 1 that
lies in the first octant, oriented upwards. Then z = f(x, y) = 1− x− y and

n dS = ⟨−fx,−fy, 1⟩ dx dy = ⟨1, 1, 1⟩ dx dy.

Taking the dot product with F = ⟨1, y, 0⟩, we conclude that

Flux =

∫∫
(1 + y) dx dy =

∫ 1

0

∫ 1−y

0

(1 + y) dx dy

=

∫ 1

0

(1 + y)(1− y) dy =

∫ 1

0

(1− y2) dy = 1− 1
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