Lecture 22, November 23

• Surface integrals. The integral of f(x, y, z) over a surface σ in \mathbb{R}^3 is

$$\iint_{\sigma} f(x, y, z) \, dS = \iint f(x(u, v), y(u, v), z(u, v)) \cdot || \boldsymbol{r}_u \times \boldsymbol{r}_v || \, du \, dv,$$

where $\boldsymbol{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$ is the parametric equation of the surface.

• When the surface is the graph of z = f(x, y), one has $dS = \sqrt{1 + f_x^2 + f_y^2} \, dx \, dy$.

Example 1 (Cylinder). The parametric equation of the cylinder $x^2 + y^2 = 1$ is

$$\boldsymbol{r} = \langle x, y, z \rangle = \langle \cos \theta, \sin \theta, z \rangle$$

and it is obtained using cylindrical coordinates. In this case, we have

$$oldsymbol{r}_{ heta} imes oldsymbol{r}_{z} = \langle -\sin heta, \cos heta, 0
angle imes \langle 0, 0, 1
angle = \langle \cos heta, \sin heta, 0
angle, ,$$

 $||oldsymbol{r}_{ heta} imes oldsymbol{r}_{z}|| = \sqrt{\cos^{2} heta + \sin^{2} heta} = 1$

and one can use these facts to compute any surface integral over the cylinder.

Example 2 (Cone). The parametric equation of the cone $z = \sqrt{x^2 + y^2}$ is

$$x^2 + y^2 = z^2 \implies \mathbf{r} = \langle x, y, z \rangle = \langle z \cos \theta, z \sin \theta, z \rangle.$$

To compute a surface integral over the cone, one needs to compute

$$\begin{aligned} \boldsymbol{r}_{\theta} \times \boldsymbol{r}_{z} &= \langle -z\sin\theta, z\cos\theta, 0 \rangle \times \langle \cos\theta, \sin\theta, 1 \rangle = \langle z\cos\theta, z\sin\theta, -z \rangle \,, \\ ||\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{z}|| &= \sqrt{z^{2}\cos^{2}\theta + z^{2}\sin^{2}\theta + z^{2}} = z\sqrt{2}. \end{aligned}$$

Example 3 (Sphere). The parametric equation of the sphere $x^2 + y^2 + z^2 = 1$ is

$$\mathbf{r} = \langle x, y, z \rangle = \langle \cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi \rangle$$

and it is obtained using spherical coordinates. In this case, we have

$$\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{\phi} = \langle -\sin\theta\sin\phi, \cos\theta\sin\phi, 0 \rangle \times \langle \cos\theta\cos\phi, \sin\theta\cos\phi, -\sin\phi \rangle$$
$$= \langle -\cos\theta\sin^{2}\phi, -\sin\theta\sin^{2}\phi, -\sin\phi\cos\phi \rangle = -(\sin\phi)\boldsymbol{r}$$

and the fact that $||\mathbf{r}|| = 1$ implies that $||\mathbf{r}_{\theta} \times \mathbf{r}_{\phi}|| = \sin \phi$.

Example 4 (A general example). The graph of z = f(x, y) can be described by

$$\boldsymbol{r} = \langle x, y, z \rangle = \langle x, y, f(x, y) \rangle$$

To compute a surface integral over this graph, one needs to compute

$$oldsymbol{r}_x imes oldsymbol{r}_y = \langle 1, 0, f_x
angle imes \langle 0, 1, f_y
angle = \langle -f_x, -f_y, 1
angle,$$

 $||oldsymbol{r}_x imes oldsymbol{r}_y|| = \sqrt{1 + f_x^2 + f_y^2}.$

Example 5. We compute the integral $\iint_{\sigma} z^2 dS$ in the case that σ is the part of the cone $z = \sqrt{x^2 + y^2}$ that lies between z = 0 and z = 1. As in Example 2, we have

$$\boldsymbol{r} = \langle z \cos \theta, z \sin \theta, z \rangle, \qquad ||\boldsymbol{r}_{\theta} \times \boldsymbol{r}_{z}|| = z\sqrt{2}.$$

This implies $dS = z\sqrt{2} dz d\theta$, so the given integral becomes

$$\iint_{\sigma} z^2 \, dS = \int_0^{2\pi} \int_0^1 z^3 \sqrt{2} \, dz \, d\theta = \int_0^{2\pi} \frac{\sqrt{2}}{4} \, d\theta = \frac{\pi\sqrt{2}}{2}$$

Example 6. Consider the lamina that occupies the part of the paraboloid $z = x^2 + y^2$ that lies below the plane z = 1. If its density is given by $\delta(x, y, z)$, then its mass is

Mass =
$$\iint_{\sigma} \delta(x, y, z) \, dS.$$

Assume that δ is constant for simplicity. Since $z = f(x, y) = x^2 + y^2$, we have

$$||\boldsymbol{r}_x \times \boldsymbol{r}_y|| = \sqrt{1 + f_x^2 + f_y^2} = \sqrt{1 + 4x^2 + 4y^2}$$

by Example 4. Using this fact and switching to polar coordinates, we find that

$$Mass = \int \int \delta \sqrt{1 + 4x^2 + 4y^2} \, dx \, dy$$

= $\delta \int_0^{2\pi} \int_0^1 (1 + 4r^2)^{1/2} r \, dr \, d\theta$
= $\frac{\delta}{8} \int_0^{2\pi} \int_1^5 u^{1/2} \, du \, d\theta$ $u = 1 + 4r^2$
= $\frac{\delta}{8} \int_0^{2\pi} \frac{5^{3/2} - 1^{3/2}}{3/2} \, d\theta$
= $\frac{\delta \pi}{6} \, (5\sqrt{5} - 1).$