Lecture 21, November 21

Green’s theorem. If R is a simply connected region in R? whose boundary C' is a
simple, closed piecewise smooth curve oriented counterclockwise, then
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In particular, the area of the region R may be computed using any of the formulas
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Example 1. Consider the triangle C' whose vertices are (0,0), (1,0) and (1,2). Then
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where R is the interior of the triangle. This actually gives

2x 21’y4 2z
%xydx—i—x dy—// (229 — dydx—/ [ 1 —xy] dx
y=0

8 2
:/(8x5—2x2)dx:———:—.
; 6 3 3

Example 2. Let C' be the circle of radius 2 around the origin and let
F(z,y) = (¢" — y’, cosy + 2%).

According to Green’s theorem, we then have
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where R is the interior of the circle. Switching to polar coordinates, we find that
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