Lecture 20, November 16

e Conservative vector fields. We say that F' = (F}, Fy) is conservative, if
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In that case, F' = V¢ = (¢,, ¢,) for some function ¢ (the potential function) and
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for any curve C' from (zg,y) to (z1,41). Thus, the integral is path-independent.

Example 1. Take F' = (2xy, x? + 2y). This vector field is conservative because
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or (2° 4 2y), = 2.
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In particular, F' = V¢ = (¢,, ¢,,) for some function ¢ and this means that
O = 22, ¢, = 2% + 2.

To actually find the potential function ¢, we note that integration gives

¢ = /Qxydx = 2%y + C1(y),

¢ = /(x2+2y)dy =2’y +y* + Cs(x)

and then compare these two equations to get the potential function ¢ = z%y + 3%

Example 2. Let F = (2zy, 2 + 2y) as before and consider the line integral
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where C' is the straight line from (1,0) to (0,1). Then we have
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