Lecture 15, October 26

e Laminas. If a lamina R has density function §(z,y), then its mass is given by

Mzé/é(x,y)dfl,

while its center of gravity is the point (z¢,yo) whose coordinates are
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To = M//M%%y) dA, Yo = M//y(s(‘ray) dA.
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For laminas of constant density, the center of gravity is also known as the centroid.

e Triple integrals. Suppose that G is a solid which is bounded above by z = g(z,y)
and below by z = h(z,y). If its projection onto the zy-plane is the region R, then

Volume of G = /// AV = //[g(a:, y) — h(z,y)] dA.

Example 1. The lamina R inside the unit circle with §(x,y) = 22 + y* has mass
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Its center of gravity (xo,yo) should be the origin by symmetry. In fact, we have
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and a similar computation gives yy = 0 as well.

Example 2. Let G be the solid which is bounded by z = 22 + 42 from below and by
the plane z = 1 from above. Its projection R onto the zy-plane is 2% 4+ y? = 1, so
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