Lecture 13, October 22

• Polar coordinates. Expressing a double integral in polar coordinates, one has

$$\iint_{\mathcal{D}} f(x, y) dA = \iint_{\mathcal{D}} f(r \cos \theta, r \sin \theta) \cdot r dr d\theta$$

for some suitable limits of integration that describe the region R.

.....

Example 1. If R is the region depicted on the left side of the figure, then

$$\iint\limits_{R} (x^2 + y^2) \, dA = \int_{0}^{1} \int_{0}^{\sqrt{1 - x^2}} (x^2 + y^2) \, dy \, dx.$$

Expressing this integral in polar coordinates, one can also write it as

$$\iint\limits_{R} (x^2 + y^2) \, dA = \int_{0}^{\pi/2} \int_{0}^{1} r^3 \, dr \, d\theta.$$

Example 2. We use polar coordinates in order to compute the integral

$$I = \int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \sqrt{x^2 + y^2} \, dx \, dy.$$

In this case, the region of integration is bounded by the line x = y on the left and by the circle $x = \sqrt{4 - y^2}$ on the right. Note that these two intersect when

$$y = \sqrt{4 - y^2} \implies y^2 = 4 - y^2 \implies 2y^2 = 4 \implies y^2 = 2$$

This explains the upper limit of integration $y = \sqrt{2}$. The region of integration is thus the one depicted on the right and we can describe it using polar coordinates to get

$$I = \int_0^{\pi/4} \int_0^2 r \cdot r \, dr \, d\theta = \int_0^{\pi/4} \left[\frac{r^3}{3} \right]_0^2 \, d\theta = \int_0^{\pi/4} \frac{8}{3} \, d\theta = \frac{2\pi}{3}.$$

Figure: The regions of integration for Examples 1 and 2.