Lecture 13, October 22

e Polar coordinates. Expressing a double integral in polar coordinates, one has
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for some suitable limits of integration that describe the region R.

Example 1. If R is the region depicted on the left side of the figure, then
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Expressing this integral in polar coordinates, one can also write it as
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Example 2. We use polar coordinates in order to compute the integral
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In this case, the region of integration is bounded by the line x = y on the left and by
the circle z = y/4 — y? on the right. Note that these two intersect when

y=+4—-12 = y=4—9y = uP=4 = =2

This explains the upper limit of integration y = v/2. The region of integration is thus
the one depicted on the right and we can describe it using polar coordinates to get
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Figure: The regions of integration for Examples 1 and 2.




