
MA2327, Sample exam

(Answer 3 of the 4 problems)

1. (a) [4 points] Determine the unique solution of the initial value problem

y′(x) = 2x · (y(x) + 1)2, y(0) = 2.

(b) [6 points] Solve the first-order linear equation

xy′(x)− y(x) = x3ex, x > 0.

(c) [10 points] Use the substitution z = ln y(x) to find all positive solutions of

xy′(x)− 4x2y(x) + 2y(x) ln y(x) = 0, x > 0.

2. (a) [6 points] Let x0, y0 ∈ R be given and consider the initial value problem

y′(x) = 2x+ (y(x)− x2)2/3, y(x0) = y0.

For which values of x0, y0 is the solution unique? What can you say about the
remaining values? Hint: an obvious change of variables gives z′(x) = z(x)2/3.

(b) [6 points] Find all continuous functions y(x) that satisfy the integral equation

y(x) = x2 +

∫ x

0

y(s)

s+ 1
ds.

(c) [8 points] Let a > 0 be given and consider the initial value problem

y′(x) =
x2 + 1

x2 + x
· y(x) · sin y(x), y(1) = a.

Use the associated integral equation to find a constant C > 0 such that

|y(x)| ≤
Cxex

(x+ 1)2
for all x ≥ 1.



3. (a) [10 points] Solve the third-order linear inhomogeneous equation

y′′′(t)− 4y′′(t) + 5y′(t)− 2y(t) = e2t − sin t.

(b) [10 points] It is easy to check that y1(t) = e2t satisfies the linear equation

ty′′(t)− (4t+ 2)y′(t) + (4t+ 4)y(t) = 0, t > 0.

Use reduction of order to find a basis of solutions for this equation.

4. (a) [10 points] Let a ∈ R be fixed and consider the linear system

x′(t) = ax(t) + y(t), y′(t) = x(t) + ay(t).

For which values of a is the zero solution stable? Asymptotically stable?

(b) [4 points] Show that the zero solution is an asymptotically stable solution of

x′(t) = −x− xy2, y′(t) = −y − x2y

by finding a strict Lyapunov function of the form V (x, y) = ax2 + by2.

(c) [6 points] Let a ∈ R be fixed and consider the linear system

x′(t) = −x(t) + y(t), y′(t) = x(t)− ay(t).

For which values of a is V (x, y) = x2 + y2 a strict Lyapunov function?



MA2327, Sample exam solutions

1a. Since y = −1 is a solution, every other solution satisfies y 6= −1 at all points, so

dy

dx
= 2x(y + 1)2 =⇒

∫

dy

(y + 1)2
=

∫

2x dx =⇒ −
1

y + 1
= x2 + C.

The initial condition y(0) = 2 implies that −1/3 = C and this finally gives

y + 1 = −
1

x2 + C
= −

3

3x2 − 1
=⇒ y = −

3x2 + 2

3x2 − 1
.

1b. The standard form is y′(x)− 1

x
y(x) = x2ex, so an integrating factor is

µ(x) = exp

(

−

∫

dx

x

)

= e− lnx+C = Kx−1.

Letting µ(x) = x−1 for simplicity, we must thus have

[

µ(x)y(x)
]′

= xex =⇒ x−1y(x) =

∫

xex dx.

To compute the integral, one needs to integrate by parts to get
∫

xex dx =

∫

x(ex)′ dx = xex −

∫

ex dx = xex − ex + C.

Once we now combine the last two equations, we may conclude that

y(x)

x
= (x− 1)ex + C =⇒ y(x) = (x2 − x)ex + Cx.

1c. If y(x) is a positive solution of the given equation, then z(x) = ln y(x) satisfies

z′(x) =
y′(x)

y(x)
=

4x2y(x)− 2y(x) ln y(x)

xy(x)
= 4x−

2z(x)

x
.

This is a first-order linear equation with integrating factor

µ(x) = exp

(
∫

2 dx

x

)

= e2 lnx+C = Kx2.

Letting µ(x) = x2 for simplicity, we must thus have

[

µ(x)z(x)
]′

= 4x3 =⇒ x2z(x) = x4 + C

=⇒ z(x) = x2 + C/x2 =⇒ y(x) = ex
2+C/x2

.



2a. The function f(x, y) = 2x+ (y − x2)2/3 is continuous at all points and its derivative

∂f

∂y
=

2

3
· (y − x2)−1/3

is continuous at all points (x, y) for which y 6= x2. Thus, a unique solution exists as
long as y0 6= x2

0. To treat the remaining case y0 = x2
0, we note that

z(x) = y(x)− x2 =⇒ z′(x) = y′(x)− 2x = (y(x)− x2)2/3 = z(x)2/3.

In particular, y(x) is a solution of the given problem if and only if z(x) satisfies

z′(x) = z(x)2/3, z(x0) = y0 − x2

0 = 0.

We claim that the last equation does not have a unique solution. In fact, z(x) = 0 is
obviously a solution and we may also separate variables to get

dz

dx
= z2/3 =⇒

∫

z−2/3 dz =

∫

dx =⇒ 3z1/3 = x+ C

=⇒ z =
(x+ C)3

27

in any interval in which z 6= 0. This makes z(x) = 1

27
(x−x0)

3 a second solution of the
initial value problem, so the solution is not unique, if it happens that y0 = x2

0.

2b. To say that y(x) satisfies the given equation is to say that y(x) satisfies

y′(x) = 2x+
y(x)

x+ 1
, y(0) = 0.

Note that the last equation is first-order linear with integrating factor

µ(x) = exp

(

−

∫

dx

x+ 1

)

= e− ln |x+1|+C = K(x+ 1)−1.

Letting µ(x) = (x+ 1)−1 for simplicity, we must thus have

[

µ(x)y(x)
]′

=
2x

x+ 1
= 2−

2

x+ 1
=⇒

y(x)

x+ 1
= 2x− 2 ln |x+ 1|+ C.

Since y(0) = 0, it easily follows that C = 0 and this finally gives

y(x) = 2x(x+ 1)− 2(x+ 1) ln |x+ 1|.

2c. A solution of the given problem is a solution of the associated integral equation

y(x) = a+

∫ x

1

s2 + 1

s2 + s
· y(s) · sin y(s) ds.



Since the sine term is at most 1, we may then use the Gronwall inequality to get

|y(x)| ≤ a+

∫ x

1

s2 + 1

s2 + s
· |y(s)| ds =⇒ |y(x)| ≤ a exp

(
∫ x

1

s2 + 1

s2 + s
ds

)

for all x ≥ 1. To compute the integral, we use partial fractions to write

s2 + 1

s2 + s
= 1 +

1− s

s2 + s
,

1− s

s2 + s
=

A

s
+

B

s+ 1

for some constants A,B. Clearing denominators, one finds that

1− s = A(s+ 1) + Bs = (A+ B)s+ A,

so it easily follows that A = 1 and B = −1− A = −2. This actually gives

∫ x

1

s2 + 1

s2 + s
ds =

∫ x

1

(

1 +
1

s
−

2

s+ 1

)

ds =
[

s+ ln s− 2 ln(s+ 1)
]x

s=1

= x+ ln x− 2 ln(x+ 1)− 1 + 2 ln 2

for all x ≥ 1. In view of our computations above, the solution is thus bounded by

|y(x)| ≤ a exp

(
∫ x

1

s2 + 1

s2 + s
ds

)

=
4axex

e(x+ 1)2
.

3a. To find the homogeneous solution yh, we solve the associated characteristic equation

λ3 − 4λ2 + 5λ− 2 = 0.

Noting that λ = 1 is a root, one may easily factor this polynomial to get

λ3 − 4λ2 + 5λ− 2 = (λ− 1) · (λ2 − 3λ+ 2) = (λ− 1)2 · (λ− 2).

In particular, the roots are λ = 1, 1, 2 and the homogeneous solution is given by

yh = c1e
t + c2te

t + c3e
2t.

Based on this fact, we now look for a particular solution of the form

yp = Ate2t + B sin t+ C cos t.

Differentiating this expression three times, one can easily check that

y′′′p − 4y′′p + 5y′p − 2yp = Ae2t + (2B − 4C) sin t+ (4B + 2C) cos t.

To ensure that yp is a solution of the given equation, we must thus ensure that

A = 1, 2B − 4C = −1, 4B + 2C = 0.



This gives B = −1/10 and also C = −2B = 1/5, so a particular solution is

yp = te2t −
sin t

10
+

cos t

5
.

We conclude that every solution of the given equation must have the form

y = yh + yp = c1e
t + c2te

t + c3e
2t + te2t −

sin t

10
+

cos t

5
.

3b. We use the change of variables y(t) = y1(t)v(t) = e2tv(t) and we note that

y(t) = e2tv,

y′(t) = 2e2tv + e2tv′,

y′′(t) = 4e2tv + 4e2tv′ + e2tv′′.

Combining these three equations, it is now easy to check that

ty′′(t)− (4t+ 2)y′(t) + (4t+ 4)y(t) = te2tv′′ − 2e2tv′.

In particular, y(t) is a solution of the given equation if and only if

tv′′ − 2v′ = 0 ⇐⇒ v′′ −
2

t
v′ = 0.

This is really a first-order linear equation in v′ with integrating factor

µ(t) = exp

(

−

∫

2

t
dt

)

= e−2 ln t+C = Kt−2.

Letting µ(t) = t−2 for simplicity, we must thus have

(µv′)′ = 0 =⇒ v′ = c1/µ = c1t
2 =⇒ v = c2t

3 + c3

=⇒ y = e2tv = c2t
3e2t + c3e

2t.

4a. The given system is linear and it can be written in the form y′(t) = Ay(t), where

A =

[

a 1
1 a

]

.

The eigenvalues of A are the roots of the characteristic polynomial

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 2aλ+ a2 − 1 = 0 =⇒ λ = a± 1.

Case 1. When a < −1, we have a − 1 < a + 1 < 0 and the eigenvalues are both
negative. Thus, the zero solution is both stable and asymptotically stable.

Case 2. When a > −1, we have a+ 1 > 0 and the zero solution is unstable.

Case 3. When a = −1, one of the eigenvalues is zero and the other one is negative.
Thus, the zero solution is stable but not asymptotically stable.



4b. Let a, b > 0 so that the first two properties of a Lyapunov function hold. Since

∇V · f =
∂V

∂x
x′(t) +

∂V

∂y
y′(t) = 2ax(−x− xy2) + 2by(−y − x2y)

= −2ax2 − 2ax2y2 − 2by2 − 2bx2y2,

we conclude that V is a strict Lyapunov function for any constants a, b > 0.

4c. It is clear that V satisfies the first two properties of a Lyapunov function, while

∇V · f =
∂V

∂x
x′(t) +

∂V

∂y
y′(t) = 2x(y − x) + 2y(x− ay).

Rearranging terms and completing the square, one now finds that

∇V · f = −2x2 + 4xy − 2ay2 = −2(x− y)2 + 2(1− a)y2.

It easily follows that V is a strict Lyapunov function if and only if a > 1.


