
MA2327: Homework #4 solutions

1. Use Theorem 2.16 to prove Theorem 2.17 and then use Theorem 2.17 to solve

y′′(t)− 2y′(t) + y(t) = et log t, t > 0.

First, we prove Theorem 2.17. Suppose y1(t), y2(t) are linearly independent solutions of

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = 0

and consider the corresponding inhomogeneous equation

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f(t).

In view of Theorem 2.16, there is a solution of the form yp(t) = c1(t)y1(t)+ c2(t)y2(t), where

[

c′1(t)
c′2(t)

]

=

[

y1(t) y2(t)
y′1(t) y′2(t)

]

−1 [

0
f(t)/a(t)

]

=
1

W (t)

[

y′2(t) −y2(t)
−y′1(t) y1(t)

] [

0
f(t)/a(t)

]

and W (t) = y1(t)y
′

2(t)− y′1(t)y2(t) denotes the Wronskian of y1 and y2. This gives

[

c′1(t)
c′2(t)

]

=
1

W (t)

[

−y2(t)f(t)/a(t)
y1(t)f(t)/a(t)

]

,

so a particular solution of the inhomogeneous equation is

yp(t) = −y1(t)

∫

y2(t)f(t)

a(t)W (t)
dt+ y2(t)

∫

y1(t)f(t)

a(t)W (t)
dt.

Next, we turn to the given equation. When it comes to the homogeneous problem, we have

λ2 − 2λ+ 1 = 0 =⇒ (λ− 1)2 = 0 =⇒ yh = c1e
t + c2te

t.

We may thus take y1(t) = et and y2(t) = tet. The corresponding Wronskian is

W (t) = et · (tet)′ − (et)′ · tet = et · (et + tet)− et · tet = e2t,

while a(t) = 1 and f(t) = et log t. In particular, every solution must have the form

y(t) = yh + yp = c1e
t + c2te

t − et
∫

tet · et log t

e2t
dt+ tet

∫

et · et log t

e2t
dt

= c1e
t + c2te

t − et
∫

t log t dt+ tet
∫

log t dt.



To compute the last two integrals, one needs to integrate by parts. In fact, one has
∫

tk log t dt =

∫
(

tk+1

k + 1

)′

log t dt

=
tk+1 log t

k + 1
−

∫

tk

k + 1
dt =

tk+1 log t

k + 1
−

tk+1

(k + 1)2
+ C

for any constant k 6= −1. Applying this formula twice, we may finally conclude that

y(t) = c1e
t + c2te

t − et
(

t2 log t

2
−

t2

4
+ c3

)

+ tet(t log t− t+ c4)

= K1e
t +K2te

t +
t2et

4
(2 log t− 3).

2. Solve the inhomogeneous equation y′′′(t)− y′′(t) + 3y′(t) + 5y(t) = t2 − t+ e2t.

To find the homogeneous solution yh, we solve the associated characteristic equation

λ3 − λ2 + 3λ+ 5 = 0.

Noting that λ = −1 is a root, one may easily factor this polynomial to get

λ3 − λ2 + 3λ+ 5 = (λ+ 1) · (λ2 − 2λ+ 5) = (λ+ 1) · ((λ− 1)2 + 4).

In particular, the roots are λ = −1 and λ = 1± 2i, so the homogeneous solution is

yh = c1e
−t + c2e

t sin(2t) + c3e
t cos(2t).

Based on this fact, we now look for a particular solution of the form

yp = At2 +Bt+ C +De2t.

Differentiating this expression three times, one finds that

y′p = 2At+ B + 2De2t, y′′p = 2A+ 4De2t, y′′′p = 8De2t

and we may thus combine these equations to conclude that

y′′′p − y′′p + 3y′p + 5yp = (3B − 2A+ 5C) + (6A+ 5B)t+ 5At2 + 15De2t.

To ensure that yp is a solution of the given equation, we need to ensure that

15D = 5A = 1, 6A+ 5B = −1, 3B − 2A+ 5C = 0.

It easily follows that (A,B,C,D) = (1/5,−11/25, 43/125, 1/15), so a particular solution is

yp =
t2

5
−

11t

25
+

43

125
+

e2t

15
.

We conclude that every solution of the given equation must have the form

y = yh + yp = c1e
−t + c2e

t sin(2t) + c3e
t cos(2t) +

t2

5
−

11t

25
+

43

125
+

e2t

15
.



3. Solve the inhomogeneous equation y′′(t)− 3y′(t) + 2y(t) = 2 cos t− 3t+ 4e2t.

When it comes to the homogeneous solution yh, one easily finds that

λ2 − 3λ+ 2 = 0 =⇒ (λ− 1)(λ− 2) = 0 =⇒ λ = 1, 2

=⇒ yh = c1e
t + c2e

2t.

Keeping this in mind, we shall now look for a particular solution of the form

yp = A sin t+ B cos t+ Ct+D + Ete2t.

Differentiating this expression twice, it is easy to check that

y′p = A cos t− B sin t+ C + Ee2t + 2Ete2t,

y′′p = −A sin t−B cos t+ 4Ee2t + 4Ete2t,

y′′p − 3y′p + 2yp = (A+ 3B) sin t+ (B − 3A) cos t+ (2D − 3C) + 2Ct+ Ee2t.

To ensure that yp is a solution of the given equation, we must thus ensure that

A+ 3B = 0, B − 3A = 2, 2D − 3C = 0, 2C = −3, E = 4.

It easily follows that (A,B,C,D,E) = (−3/5, 1/5,−3/2,−9/4, 4), so a particular solution is

yp = −
3 sin t

5
+

cos t

5
−

3t

2
−

9

4
+ 4te2t.

In other words, every solution of the given equation must have the form

y = yh + yp = c1e
t + c2e

2t −
3 sin t

5
+

cos t

5
−

3t

2
−

9

4
+ 4te2t.

4. The function y1(t) = t is easily seen to satisfy the linear equation

t3y′′(t)− ty′(t) + y(t) = 0, t > 0.

Use reduction of order to find a basis of solutions for this equation.

We use the change of variables y(t) = y1(t)v(t) = tv(t) and we note that

y′(t) = v(t) + tv′(t),

y′′(t) = 2v′(t) + tv′′(t),

t3y′′(t)− ty′(t) + y(t) = t4v′′(t) + (2t3 − t2)v′(t).



This means that y(t) is a solution of the given equation if and only if

v′′(t) +

(

2

t
−

1

t2

)

v′(t) = 0.

The last equation is really a first-order linear equation in v′(t) with integrating factor

µ(t) = exp

(
∫

2

t
dt−

∫

1

t2
dt

)

= e2 log t+1/t+C = Kt2e1/t.

Taking K = 1 for simplicity, we must thus have

(µv′)′ = 0 =⇒ µv′ = c1 =⇒ v′ = c1/µ = c1t
−2e−1/t

=⇒ v = c1

∫

t−2e−1/t dt = c1

∫

eu du,

where u = −1/t. It easily follows that every solution has the form

v = c1e
u + c2 = c1e

−1/t + c2 =⇒ y(t) = tv(t) = c1te
−1/t + c2t.


