
MA2327: Homework #2 solutions

1. Let x0, y0 ∈ R be given and consider the initial value problem

y′(x) =
xy(x)

x− 1
, y(x0) = y0.

For which values of x0, y0 is the solution unique? What can you say for the remaining
values? Hint: A similar problem appears in the notes online; see Chapter 1, page 30.

I should have perhaps stated this problem in the alternative form

(x− 1)y′(x) = xy(x), y(x0) = y0

because the other form is not defined when x = 1. Since both f = xy

x−1
and ∂f

∂y
= x

x−1
are

continuous whenever x 6= 1, a unique solution exists whenever x0 6= 1.
Suppose now that x0 = 1. Then the given equation implies that

xy(x) = (x− 1)y′(x) =⇒ y(1) = 0 =⇒ y0 = y(x0) = 0,

so there are no solutions when y0 6= 0. To treat the remaining case y0 = 0, we note that

(x− 1) ·
dy

dx
= xy =⇒

∫

dy

y
=

∫

x

x− 1
dx =

∫
(

1 +
1

x− 1

)

dx

at all points at which x 6= 1 and y 6= 0. This provides the explicit formula

log |y| = x+ log |x− 1|+ C =⇒ y = K(x− 1)ex

at all points at which x 6= 1 and y 6= 0. On the other hand, it is easy to check that

y = K(x− 1)ex =⇒ y′ = Kex +K(x− 1)ex = Kxex

=⇒ (x− 1)y′ = Kx(x− 1)ex = xy.

In other words, y = K(x− 1)ex satisfies the given equation at all points. Since y(1) = 0 and
the constant K is arbitrary, there are infinitely many solutions when x0 = 1 and y0 = 0.

2. Let a > 0 be given and consider the initial value problem

y′(x) =
x2 + 3

x3 + x
· y(x) · sin y(x), y(1) = a.

Use the associated integral equation to show that |y(x)| ≤ 2ax3

x2+1
for all x ≥ 1. Hint: the

sine term is at most 1; use the Gronwall inequality and then partial fractions.



A solution of the given problem is a solution of the associated integral equation

y(x) = a+

∫ x

1

s2 + 3

s3 + s
· y(s) · sin y(s) ds.

Since the sine term is at most 1, we may then use the Gronwall inequality to get

|y(x)| ≤ a+

∫ x

1

s2 + 3

s3 + s
· |y(s)| ds =⇒ |y(x)| ≤ a exp

(
∫ x

1

s2 + 3

s3 + s
ds

)

for all x ≥ 1. To compute the integral, we use partial fractions to write

s2 + 3

s3 + s
=

s2 + 3

s(s2 + 1)
=

A

s
+

Bs+ C

s2 + 1

for some constants A,B,C. Clearing denominators, we now find that

s2 + 3 = A(s2 + 1) + (Bs+ C)s = (A+ B)s2 + Cs+ A,

so one may compare coefficients to get A+ B = 1, C = 0 and A = 3. This gives

∫ x

1

s2 + 3

s3 + s
ds =

∫ x

1

(

3

s
−

2s

s2 + 1

)

ds =
[

3 log s− log(s2 + 1)
]x

s=1

= 3 log x− log(x2 + 1) + log 2

for all x ≥ 1. In view of our computations above, the solution is thus bounded by

|y(x)| ≤ a exp

(
∫ x

1

s2 + 3

s3 + s
ds

)

=
2ax3

x2 + 1
.

3. Find a basis of solutions for the linear homogeneous system

y
′(t) = A(t)y(t), A(t) =

[

2t/(t2 + 1) 0
2t 2t

]

.

The given matrix is lower triangular and it corresponds to the system of equations

x′(t) =
2tx(t)

t2 + 1
, y′(t) = 2tx(t) + 2ty(t).

These equations are both first-order linear. The leftmost one has integrating factor

µ(t) = exp

(

−

∫

2t dt

t2 + 1

)

= e− log(t2+1)+C =
K

t2 + 1



and we may certainly take K = 1 for simplicity. In particular, we have

[

µ(t)x(t)
]

′

= 0 =⇒ µ(t)x(t) = c1 =⇒ x(t) =
c1
µ(t)

= c1(t
2 + 1).

Let us now turn to the equation that involves y(t) and write

y′(t)− 2ty(t) = 2tx(t) = 2c1t(t
2 + 1).

In this case, an integrating factor is given by µ(t) = e−t2 and one has

[

e−t2y(t)
]

′

= 2c1t(t
2 + 1)e−t2 =⇒ e−t2y(t) =

∫

2c1t(t
2 + 1)e−t2 dt.

To compute the integral, we use the substitution w = t2 which gives dw = 2t dt and

e−t2y(t) =

∫

c1(w + 1)e−w dw =

∫

c1(w + 1)
(

−e−w
)

′

dw

= −c1(w + 1)e−w +

∫

c1e
−w dw

= −c1(w + 1)e−w − c1e
−w + c2.

Since w = t2 by above, this actually shows that

e−t2y(t) = −c1(w + 2)e−w + c2 =⇒ y(t) = −c1(t
2 + 2) + c2e

t2 .

In particular, every solution of the given system must have the form

y(t) =

[

x(t)
y(t)

]

= c1

[

t2 + 1
−(t2 + 2)

]

+ c2

[

0

et
2

]

.

4. Use the eigenvector method to solve the linear homogeneous system







x′(t) = 5x(t) + 2y(t)− 4z(t)
y′(t) = 4x(t) + 7y(t)− 8z(t)
z′(t) = 4x(t) + 2y(t)− 3z(t)







.

We need to solve the system y
′ = Ay in the case that A is the 3× 3 matrix

A =





5 2 −4
4 7 −8
4 2 −3



 .

As one can easily check, the characteristic polynomial of this matrix is given by

f(λ) = det(A− λI) = −λ3 + 9λ2 − 23λ+ 15.



Noting that λ = 1 is a root, one may now factor this polynomial to get

f(λ) = −(λ− 1)(λ2 − 8λ+ 15) = −(λ− 1)(λ− 3)(λ− 5).

This means that the eigenvalues are λ = 1, 3, 5. The corresponding eigenvectors are

v1 =





1
2
2



 , v2 =





1
1
1



 , v3 =





1
2
1



 .

In particular, A is diagonalisable and every solution of the system has the form

y = c1e
t
v1 + c2e

3t
v2 + c3e

5t
v3 =





c1e
t + c2e

3t + c3e
5t

2c1e
t + c2e

3t + 2c3e
5t

2c1e
t + c2e

3t + c3e
5t



 .


