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Autonomous systems

Definition 3.1 – Autonomous systems

A system of ordinary differential equations is called autonomous, if it
has the form y′(t) = f(y(t)) for some vector-valued function f .

We shall mainly focus on the 2× 2 case and study the system

{

x′(t) = f(x(t), y(t))
y′(t) = g(x(t), y(t))

}

.

Suppose that the functions f, g are continuously differentiable. Then
there is a unique solution for each initial condition (x0, y0) and each
solution (x(t), y(t)) corresponds to a differentiable curve in R

2.

A phase portrait for a given system is a graphical depiction of all the
curves that correspond to solutions of the system. Every point must
lie on some curve and distinct curves do not intersect by uniqueness.
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Analysis of linear systems, page 1

First of all, we shall analyse the phase portrait of the linear system

y′(t) = Ay(t)

when A is a 2× 2 diagonalisable matrix with eigenvalues λ1, λ2 6= 0.

In this case, J = B−1AB is diagonal for some matrix B, so one may
use the change of variables z(t) = B−1y(t) to find that

z′(t) = B−1y′(t) = B−1Ay(t) = B−1ABz(t) = Jz(t).

This is a diagonal system that we can readily solve to get

z′k(t) = λkzk(t) =⇒ zk(t) = cke
λkt.

In particular, the new variables z1, z2 satisfy a relation of the form

z2 = c2e
λ2t = c2

(

c1e
λ1t

c1

)λ2/λ1

= Kz
λ2/λ1

1
, if c1 6= 0.
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Analysis of linear systems, page 2

In terms of the new variable z(t), the solution of the system is

z(t) =

[

c1e
λ1t

c2e
λ2t

]

= c1e
λ1te1 + c2e

λ2te2.

In terms of the original variable y(t), the solution is thus

y(t) = Bz(t) = c1e
λ1tv1 + c2e

λ2tv2,

where vk is an eigenvector of A with eigenvalue λk for each k.

When c1 = 0, the last equation describes the line that contains the
vector v2. When c2 = 0, it describes the line that contains v1.

If it happens that λ1 < λ2 < 0, then every solution curve approaches
the origin as t → +∞ and its direction is parallel to v2 as t → +∞.

If it happens that λ1 < 0 < λ2, then every solution curve must be
parallel to v1 as t → −∞ and also parallel to v2 as t → +∞.
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Analysis of linear systems, page 3

Next, we analyse the phase portrait of the 2× 2 linear system

y′(t) = Ay(t)

when A is a non-diagonalisable matrix with a single eigenvalue λ 6= 0.

Once again, we let J = B−1AB be the Jordan form of A and we use
the change of variables z(t) = B−1y(t) to find that

z′(t) = B−1y′(t) = B−1Ay(t) = B−1ABz(t) = Jz(t).

Since etJ is a fundamental matrix for this system, we conclude that

z(t) = etJc =

[

eλt

teλt eλt

] [

c1
c2

]

=

[

c1e
λt

(c1t+ c2)e
λt

]

.

In particular, the new variables z1, z2 satisfy a relation of the form

z2
z1

=
c1t+ c2

c1
= t+

c2
c1
, if c1 6= 0.
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Analysis of linear systems, page 4

In terms of the new variable z(t), the solution of the system is

z(t) = c1e
λte1 + (c1t+ c2)e

λte2.

In terms of the original variable y(t), the solution is thus

y(t) = Bz(t) = c1e
λtv1 + (c1t+ c2)e

λtv2,

where v1,v2 are the columns of B which form a Jordan basis for A.

When c1 = 0, the last equation reduces to y(t) = c2e
λtv2 and this

describes the line which contains the eigenvector v2.

If it happens that λ < 0, then every solution must approach the origin
as t → +∞ and its direction must be parallel to v2 as t → +∞.

If it happens that λ > 0, then every solution must approach the origin
as t → −∞ and its direction must be parallel to v2 as t → −∞.
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Analysis of linear systems, page 5

Finally, we analyse the phase portrait of the 2× 2 linear system

y′(t) = Ay(t)

when the eigenvalues of A are λ = a± ib, where a, b ∈ R and b > 0.

Since the eigenvalues are distinct, the corresponding eigenvectors are
linearly independent and they are also complex conjugates because

Av = (a+ ib)v =⇒ Av = (a− ib)v.

Let us write v = v1 + iv2 for some real vectors v1,v2. To see that
these vectors must be linearly independent, we note that

c1v1 + c2v2 = 0 =⇒ c1
2
(v + v) +

c2
2i

(v − v) = 0

=⇒ ic1 + c2 = ic1 − c2 = 0

=⇒ c1 = c2 = 0.

We now use the vectors v1,v2 to obtain a basis of real solutions.
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Analysis of linear systems, page 6

Since v = v1 + iv2 is an eigenvector with eigenvalue λ = a+ ib,

y(t) = eλtv = eat(cos(bt) + i sin(bt)) · (v1 + iv2)

is a solution of the system. The same is true for its conjugate and for
any linear combination of the two, so both the real and the imaginary
part of y(t) are solutions. Let us then consider the functions

y1(t) = Rey(t) = eat(cos(bt)v1 − sin(bt)v2),

y2(t) = Imy(t) = eat(sin(bt)v1 + cos(bt)v2).

These are real solutions of the system which are linearly independent
when t = 0, so they actually form a basis for the space of solutions.

Thus, every solution of the system can be expressed in the form

y(t) = c1y1(t) + c2y2(t).
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Analysis of linear systems, page 7

Let B be the matrix whose columns are the vectors v1,v2. Then B is
invertible and the change of variables z(t) = B−1y(t) gives

z(t) = c1e
at

[

cos(bt)
− sin(bt)

]

+ c2e
at

[

sin(bt)
cos(bt)

]

.

In particular, the new variables z1, z2 satisfy a relation of the form

z1(t)
2 + z2(t)

2 = e2at
(

c1 cos(bt) + c2 sin(bt)
)2

+ e2at
(

−c1 sin(bt) + c2 cos(bt)
)2

= e2at(c21 + c22).

If it happens that a = 0, then the last equation describes a circle. If it
happens that a 6= 0, on the other hand, it describes a spiral that winds
towards the origin when a < 0 and away from the origin when a > 0.
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Phase portraits of linear systems, page 1

In order to summarise our results, we shall now consider six cases.

1 Suppose that A has two distinct eigenvalues of the same sign. Then
the phase portrait contains two lines and some curves that look like
parabolas. In this case, we say that the origin is an improper node.

2 Suppose that A has two distinct eigenvalues of opposite sign. Then
the phase portrait contains two lines and some curves that look like
hyperbolas. In this case, we say that the origin is a saddle point.

3 Suppose that A is diagonalisable but has a single eigenvalue λ 6= 0.
Then there exists a matrix B such that B−1AB is diagonal and

B−1AB = λI =⇒ A = λBB−1 =⇒ A = λI.

This is obviously a very special case. In fact, every nonzero vector is
an eigenvector of A and the phase diagram consists of lines through
the origin. In this case, we say that the origin is a proper node.
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Phase portraits of linear systems, page 2

4 Suppose that A is non-diagonalisable with a single eigenvalue λ 6= 0.
Then the phase portrait contains a single line and some curves which
are asymptotically tangent to the line at the origin. Needless to say,
this case is closely related to the first case involving two eigenvalues
of the same sign. Thus, one still calls the origin an improper node.

5 Suppose that A has two complex eigenvalues λ = ±ib, where b > 0.
Then the phase portrait consists of ellipses around the origin and we
say that the origin is a centre.

6 Suppose that A has eigenvalues λ = a± ib, where a 6= 0 and b > 0.
Then the phase portrait consists of spirals around the origin and we
say that the origin is a spiral point. The spirals get to wind towards
the origin when a < 0 and away from the origin when a > 0.

These are the only cases that may arise, if the matrix A is invertible.
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Phase portraits of linear systems, page 3

1 Improper node

4 Improper node

2 Saddle point

5 Centre

3 Proper node

6 Spiral point
12 / 39



Critical points

Definition 3.2 – Critical point

Consider the autonomous system y′(t) = f(y(t)). We say that c is a
critical or equilibrium point of this system, if c is a constant solution
of the system. This is the case if and only if f(c) = 0.

For instance, the critical points of the linear system y′(t) = Ay(t) are
the constant vectors c that satisfy Ac = 0. When A is invertible, the
only critical point is thus the origin c = 0.

As another example, consider the 2× 2 nonlinear system

x′(t) = 1− y(t), y′(t) = 4− x(t)2.

Then the critical points are the points (x0, y0) that satisfy

1− y0 = 0, 4− x20 = 0.

Thus, it easily follows that the only critical points are (±2, 1).
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Definition of stability

Definition 3.3 – Stability and asymptotic stability

Suppose that c is a critical point of the system y′(t) = f(y(t)).

1 We say that c is stable if, given any ε > 0, there exists δ > 0
such that every solution of the system satisfies

||y(0)− c|| < δ =⇒ ||y(t)− c|| < ε for all t ≥ 0.

2 We say that c is asymptotically stable, if it is stable and there
exists δ > 0 such that every solution of the system satisfies

||y(0)− c|| < δ =⇒ lim
t→∞

y(t) = c.

Loosely speaking, stability means that every solution which is initially
close to the critical point c must remain close to c at all times.
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Stability of linear systems

Theorem 3.4 – Stability of linear systems

Consider the system y′(t) = Ay(t), where A is a constant matrix.

1 The zero solution is stable if and only if the eigenvalues of A
have real part Reλ ≤ 0 and those with Reλ = 0 are simple.

2 The zero solution is asymptotically stable if and only if every
eigenvalue of A has real part Reλ < 0.

This theorem is closely related to the fact that every solution of the
system can be written as y(t) = etAc for some constant vector c.

The entries of the matrix exponential etA involve expressions of the
form tjeλt and those approach zero as t → ∞ whenever Reλ < 0.

If one of the eigenvalues has positive real part, however, then some
solutions grow exponentially and the zero solution is unstable.
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Stability of linear systems: Example 1

Let a ∈ R be a fixed parameter and consider the linear system

y′(t) = Ay(t), A =

[

a −1
1 a

]

.

The characteristic polynomial of A is easily found to be

f(λ) = λ2 − (trA)λ+ detA = λ2 − 2aλ+ a2 + 1.

The eigenvalues of A are the roots of this polynomial, namely

(λ− a)2 + 1 = 0 =⇒ λ− a = ±i =⇒ λ = a± i.

These are complex with real part a, so the zero solution is unstable
when a > 0, asymptotically stable when a < 0, and also stable but
not asymptotically stable in the remaining case a = 0.
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Stability of linear systems: Example 2

Let a ∈ R be a fixed parameter and consider the linear system

y′(t) = Ay(t), A =

[

a 1
1 a

]

.

In this case, the characteristic polynomial of A is

f(λ) = λ2 − (trA)λ+ detA = λ2 − 2aλ+ a2 − 1.

Proceeding as before, we conclude that the eigenvalues of A are

(λ− a)2 − 1 = 0 =⇒ λ− a = ±1 =⇒ λ = a± 1.

If a < −1, then both eigenvalues are negative and the zero solution is
asymptotically stable. If a > −1, then a positive eigenvalue exists and
the zero solution is unstable. If a = −1, finally, then λ = 0,−2 and
the zero solution is stable but not asymptotically stable.
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Stability of nonlinear systems: Example 1

We study the stability of the zero solution in the case that

x′(t) = −2x− xy2, y′(t) = −2y3 + x2y.

The distance between the point (x(t), y(t)) and the origin is

r(t) =
√

x(t)2 + y(t)2 =⇒ r(t)2 = x(t)2 + y(t)2.

To show that this distance is actually decreasing, we note that

2r(t)r′(t) = 2x(t)x′(t) + 2y(t)y′(t)

= 2x(−2x− xy2) + 2y(−2y3 + x2y)

= −4x2 −
✟
✟
✟

2x2y2 − 4y4 +
✟
✟
✟

2x2y2.

Thus, solutions which are initially close to the origin are close to the
origin at all times. This implies that the zero solution is stable.
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Stability of nonlinear systems: Example 2

We show that the zero solution is asymptotically stable when

x′(t) = −2x+ 4xy3, y′(t) = −y − 2x2.

In this case, we define H(t) = x(t)2 + y(t)4 and we note that

H ′(t) = 2x(t)x′(t) + 4y(t)3y′(t)

= 2x(−2x+ 4xy3) + 4y3(−y − 2x2)

= −4x2 +
✟

✟
✟

8x2y3 − 4y4 −
✟
✟
✟

8x2y3.

This shows that H ′(t) = −4H(t), so it easily follows that

H(t) = Ce−4t = H(0)e−4t =⇒ lim
t→∞

H(t) = 0.

Since H(t) = x(t)2 + y(t)4 goes to zero, each of x(t), y(t) must go
to zero as well. Thus, the zero solution is asymptotically stable.

19 / 39



First Lyapunov theorem

Definition 3.5 – Lyapunov function

Consider the n× n system y′(t) = f(y(t)) in the case that f(0) = 0.
We say that V : Rn → R is a Lyapunov function for the system, if the
following properties hold in an open region R around the origin.

1 V (x) is continuous in R,

2 V (x) ≥ 0 for all x ∈ R with equality if and only if x = 0,

3 ∇V (x) · f(x) ≤ 0 for all x ∈ R.

Theorem 3.6 – First Lyapunov theorem

Consider the n× n system y′(t) = f(y(t)) in the case that f(0) = 0.
If a Lyapunov function exists, then the zero solution is stable.

20 / 39



First Lyapunov theorem: Some comments

The third condition in the definition of a Lyapunov function V (x) is
meant to ensure that V (y(t)) is decreasing in t for every solution of
the system. More precisely, one may use the chain rule to find that

d

dt
V (y(t)) =

d

dt
V (y1(t), y2(t), . . . , yn(t))

=
∂V

∂y1

dy1
dt

+
∂V

∂y2

dy2
dt

+ . . .+
∂V

∂yn

dyn
dt

= ∇V (y(t)) · y′(t) = ∇V (y(t)) · f(y(t)).

When it comes to applications in physics, a very natural choice for a
Lyapunov function is given by the energy. In fact, an object’s energy
must be either conserved or else decreasing for physical reasons.

We shall mainly look at 2× 2 systems and seek Lyapunov functions
that have the form V (x, y) = ax2 + by2 for some a, b > 0.
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First Lyapunov theorem: Proof, page 1

Let ε > 0 be given and choose 0 < r < ε small enough so that

Cr = {x ∈ R
n : ||x|| = r}

is contained within R. Since V is continuous, it attains a minimum
value m > 0 over the compact set Cr and one has

m ≤ V (x) whenever ||x|| = r. (L1)

Since V is continuous at x = 0, there also exists δ > 0 such that

||x|| < δ =⇒ V (x) < m. (L2)

Note that the last two equations imply that δ ≤ r. To prove stability,
we show that every solution which satisfies ||y(0)|| < δ is actually a
global solution which satisfies ||y(t)|| < r < ε for all t ≥ 0.
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First Lyapunov theorem: Proof, page 2

Now, suppose that the inequality ||y(t)|| < r is violated at some point
and let T be the first such point. When it comes to times 0 ≤ t < T ,
the graph of y(t) lies within Cr, so it lies within R and one has

d

dt
V (y(t)) = ∇V (y(t)) · y′(t) = ∇V (y(t)) · f(y(t)) ≤ 0.

In particular, V (y(t)) is decreasing on [0, T ) and (L2) implies that

||y(0)|| < δ =⇒ V (y(t)) ≤ V (y(0)) < m

for all 0 ≤ t < T . Taking the limit as t → T , we conclude that

V (y(T )) ≤ V (y(0)) < m.

However, the last equation contradicts (L1) because ||y(T )|| = r by
definition. Thus, the inequality ||y(t)|| < r must hold at all times.
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First Lyapunov theorem: Example 1

We show that the zero solution is stable in the case that

x′(t) = y2 − x3, y′(t) = −y − 2xy.

Consider the function V (x, y) = ax2 + by2 for some a, b > 0. This is
certainly continuous and non-negative, while V (x, y) = 0 if and only
if x = y = 0. To show that V is a Lyapunov function, we compute

∇V · f =
∂V

∂x
x′(t) +

∂V

∂y
y′(t)

= 2ax(y2 − x3) + 2by(−y − 2xy)

= (2a− 4b)xy2 − 2ax4 − 2by2.

We need to ensure that ∇V · f ≤ 0 and this is obviously true, if we
let a = 2b > 0. In other words, V (x, y) = 2bx2 + by2 is a Lyapunov
function for any constant b > 0, so the zero solution is stable.
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First Lyapunov theorem: Example 2

We show that the zero solution is stable in the case that

x′(t) = y2 − 2x, y′(t) = x2 − y.

To see that V (x, y) = x2 + y2 is a Lyapunov function, we note that

∇V · f =
∂V

∂x
x′(t) +

∂V

∂y
y′(t)

= 2x(y2 − 2x) + 2y(x2 − y)

= (2x− 2)y2 + (2y − 4)x2.

This expression is not negative at all points, but it is negative near
the origin since both 2x− 2 and 2y − 4 are negative near the origin.

Consider the region R = (−1, 1)× (−2, 2), for instance. Since this is
open and one has ∇V · f ≤ 0 within R, the zero solution is stable.
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Pendulum equation, page 1

Consider a pendulum consisting of a mass m which is attached to a
massless string of length L. To describe its motion, we look at the
angle θ(t) formed between the pendulum and the vertical axis.

Since the pendulum moves along a circle of radius L, its position at
time t is the length of the arc corresponding to the angle θ, namely

Position = Arc length = L · θ(t).

The only force acting on the pendulum is the gravitational force and
its component in the direction of motion has length −mg sin θ(t).

According to Newton’s second law of motion, we must thus have

m(Lθ)′′ = −mg sin θ =⇒ θ′′ = − g

L
sin θ.

This nonlinear equation is also known as the pendulum equation.

26 / 39



Pendulum equation, page 2

Let us now express the pendulum equation as a 2× 2 system. If we
introduce the variables x = θ(t) and y = θ′(t), we can then write

x′ = θ′ = y, y′ = θ′′ = − g

L
sinx.

The zero solution x = y = 0 corresponds to the equilibrium vertical
position and it ought to be stable for physical reasons. In order to
prove its stability, we shall now consider the function

V (x, y) =
1

2
mL2y2 +mgL(1− cosx).

This function actually represents the pendulum’s energy. It is the sum
of the kinetic energy 1

2
mv2 and the potential energy mgh, where v is

the velocity and h is the height above the equilibrium position.

We need to show that V (x, y) is a Lyapunov function for the system.

27 / 39



Pendulum equation, page 3

Consider the region R = (−π
2
, π
2
)× R. This is obviously open, while

V (x, y) =
1

2
mL2y2 +mgL(1− cosx)

is continuous and non-negative. Since −π
2
< x < π

2
, we also have

V (x, y) = 0 ⇐⇒ y = 0 and cosx = 1 ⇐⇒ x = y = 0.

This proves the first two properties of a Lyapunov function, while

∇V · f =
∂V

∂x
x′(t) +

∂V

∂y
y′(t)

= mgL sinx · y +mL2y · (−g sinx)/L = 0.

Thus, V (x, y) is a Lyapunov function and the zero solution is stable.
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Second Lyapunov theorem

Definition 3.7 – Strict Lyapunov function

Consider the n× n system y′(t) = f(y(t)) in the case that f(0) = 0.
We say that V : Rn → R is a strict Lyapunov function for the system,
if the following properties hold in an open region R around the origin.

1 V (x) is continuously differentiable in R,

2 V (x) ≥ 0 for all x ∈ R with equality if and only if x = 0,

3 ∇V (x) · f(x) ≤ 0 in R with equality if and only if x = 0.

Theorem 3.8 – Second Lyapunov theorem

Consider the n× n system y′(t) = f(y(t)) when f(0) = 0. If there is
a strict Lyapunov function, the zero solution is asymptotically stable.
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Second Lyapunov theorem: Proof, page 1

Choose ε > 0 so that the sphere ||x|| = ε is contained within R.
Since the zero solution is stable, there exists δ > 0 such that

||y(0)|| < δ =⇒ ||y(t)|| < ε for all t ≥ 0.

We note that V (y(t)) is non-negative and also decreasing since

d

dt
V (y(t)) = ∇V (y(t)) · y′(t) = ∇V (y(t)) · f(y(t)) ≤ 0.

Thus, V (y(t)) attains a limit L ≥ 0 as t → ∞. If L = 0, then

lim
t→∞

V (y(t)) = 0 =⇒ lim
t→∞

y(t) = 0

and asymptotic stability follows. To finish the proof, it remains to
show that the remaining case L > 0 leads to a contradiction.
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Second Lyapunov theorem: Proof, page 2

Suppose now that L > 0. Then there exists γ > 0 such that

||x|| < γ =⇒ V (x) < L.

Since we also have V (y(t)) ≥ L at all times, the solution must lie in
the annulus γ ≤ ||y(t)|| ≤ ε at all times. Letting m be the maximum
value attained by ∇V · f in this annulus, we find that m < 0 and

d

dt
V (y(t)) = ∇V (y(t)) · f(y(t)) ≤ m.

Integrating over the interval [0, t], we may thus conclude that

V (y(t)) ≤ V (y(0)) +mt =⇒ lim
t→∞

V (y(t)) = −∞.

This obviously contradicts the fact that V (y(t)) ≥ 0 at all times.
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Second Lyapunov theorem: Example 1

We show that the zero solution is asymptotically stable when

x′(t) = y3 − x, y′(t) = −y − 3xy2.

Consider the function V (x, y) = ax2 + by2 and note that

∇V · f =
∂V

∂x
x′(t) +

∂V

∂y
y′(t)

= 2ax(y3 − x) + 2by(−y − 3xy2)

= (2a− 6b)xy3 − 2ax2 − 2by2.

If we now let 0 < a = 3b, then the last equation ensures that

∇V · f = −6bx2 − 2by2 ≤ 0

with equality only at the origin. Thus, V (x, y) = 3bx2 + by2 is a strict
Lyapunov function and the zero solution is asymptotically stable.
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Second Lyapunov theorem: Example 2

Let a > 0 be a fixed parameter and consider the system

x′(t) = ay2 − x, y′(t) = x2 − 2y.

We define the function V (x, y) = x2 + y2 and we note that

∇V · f =
∂V

∂x
x′(t) +

∂V

∂y
y′(t)

= 2x(ay2 − x) + 2y(x2 − 2y)

= (2y − 2)x2 + (2ax− 4)y2.

This expression is negative within R =
(

− 1

a ,
1

a

)

×
(

−1

2
, 1
2

)

because

∇V · f ≤ (1− 2)x2 + (2− 4)y2 ≤ 0

within R. In fact, ∇V · f = 0 only at the origin, so V (x, y) is a strict
Lyapunov function and the zero solution is asymptotically stable.
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Linear approximation

Theorem 3.9 – Linear approximation

Suppose that c is a critical point of the system y′(t) = f(y(t)) and
that f is continuously differentiable. Then z(t) = y(t)− c satisfies

z′(t) = A · z(t) +R(t) · z(t),

where A is the Jacobian matrix with entries aij = ∂fi
∂yj

(c) and R(t) is

a matrix whose entries go to zero as ||z|| goes to zero.

In other words, the difference z(t) = y(t)− c satisfies a system that
behaves like the linear system z′ = Az near the critical point c.

This suggests that the stability of the critical point c is closely related
to the eigenvalues of the Jacobian matrix A. If all the eigenvalues are
negative, for instance, then z(t) behaves like a linear combination of
decaying exponentials, so one expects c to be asymptotically stable.
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Linearisation method

Theorem 3.10 – Linearisation method

Suppose c is a critical point of the system y′(t) = f(y(t)) and f is
continuously differentiable. Let A be the Jacobian matrix as before.

1 If every eigenvalue of A has negative real part, then the critical
point c is both stable and asymptotically stable.

2 If some eigenvalue of A has positive real part, then c is unstable.

We shall mainly be concerned with 2× 2 systems of the form

x′(t) = f(x, y), y′(t) = g(x, y).

In that case, the Jacobian matrix at a critical point (x0, y0) is

A =

[

fx(x0, y0) fy(x0, y0)
gx(x0, y0) gy(x0, y0)

]

.

35 / 39
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Consider the critical points of the 2× 2 nonlinear system

x′(t) = x2 − y, y′(t) = x− y.

To find them explicitly, one needs to solve the equations

x2 − y = x− y = 0 =⇒ x = y, x2 − x = 0.

It easily follows that the critical points are P (0, 0) and Q(1, 1).

To study their stability properties, we look at the Jacobian matrix

A =

[

fx fy
gx gy

]

=

[

2x −1
1 −1

]

and we compute its eigenvalues. Since the eigenvalues depend on x,
one needs to examine each of the critical points separately.
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When it comes to the critical point P (0, 0), the Jacobian matrix is

A =

[

0 −1
1 −1

]

and its eigenvalues are the roots of the characteristic polynomial

λ2 + λ+ 1 = 0 =⇒ λ =
−1± i

√
3

2
.

Thus, their real part is negative and P is asymptotically stable.

When it comes to the critical point Q(1, 1), the Jacobian matrix is

A =

[

2 −1
1 −1

]

and its eigenvalues are the roots of the characteristic polynomial

λ2 − λ− 1 = 0 =⇒ λ =
1±

√
5

2
.

In particular, one of the eigenvalues is positive and Q is unstable.
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We study the critical points of the 2× 2 nonlinear system

x′(t) = x(y − 1), y′(t) = x− y − 1.

To find them explicitly, one needs to solve the equations

x(y − 1) = 0, x = y + 1.

When x = 0, the second equation gives y = −1. When y = 1, the
second equation gives x = 2. This means that the system has two
critical points, namely R(0,−1) and S(2, 1).

To study their stability properties, we look at the Jacobian matrix

A =

[

fx fy
gx gy

]

=

[

y − 1 x
1 −1

]

and we compute the eigenvalues of A for each of the critical points.
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When it comes to the critical point R(0,−1), the Jacobian matrix is

A =

[

−2 0
1 −1

]

.

This is lower triangular, so its eigenvalues are the diagonal entries. As
those are both negative, we conclude that R is asymptotically stable.

When it comes to the critical point S(2, 1), the Jacobian matrix is

A =

[

0 2
1 −1

]

and its eigenvalues are the roots of the characteristic polynomial

λ2 + λ− 2 = 0 =⇒ λ =
−1± 3

2
= −2, 1.

In particular, one of the eigenvalues is positive and S is unstable.
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