A linear homogeneous system is a system that has the form

$$y'(t) = A(t)y(t),$$ \hspace{1cm} \text{(LHS)}$$

where $y(t)$ is the vector of unknowns and $A(t)$ is a square matrix.

The set of solutions of a linear homogeneous system is closed under addition and scalar multiplication. In other words, the sum of any two solutions is a solution and scalar multiples of solutions are solutions.

- The superposition principle asserts that the solutions of (LHS) form a vector space. If one can find some solutions that form a basis for this vector space, then every solution will be a linear combination of them.
Linear independence of functions

Definition 2.3 – Linear independence of functions

The functions \(y_1(t), y_2(t), \ldots, y_n(t) \) are called linearly dependent, if there exist constants \(c_1, c_2, \ldots, c_n \) which are not all zero such that

\[
c_1 y_1(t) + c_2 y_2(t) + \ldots + c_n y_n(t) = 0 \quad \text{for all } t.
\]

Otherwise, we say that the functions are linearly independent.

- Linear independence of vector-valued functions is a bit more subtle than linear independence of constant vectors. This is because the coefficients \(c_k \) are not allowed to depend on \(t \). For instance,

\[
y_1(t) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad y_2(t) = \begin{bmatrix} t \\ 0 \end{bmatrix}
\]

are linearly independent functions, even though one has \(y_2 = ty_1 \).
Linear independence of functions: Example

- We check that \(y_1(t), y_2(t), y_3(t) \) are linearly independent when

\[
y_1(t) = \begin{bmatrix} e^t \\ t \end{bmatrix}, \quad y_2(t) = \begin{bmatrix} t \\ t \end{bmatrix}, \quad y_3(t) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.
\]

- Suppose that \(c_1 y_1(t) + c_2 y_2(t) + c_3 y_3(t) = 0 \), in which case

\[
c_1 e^t + c_2 t + c_3 = c_1 t + c_2 t + c_3 = 0 \quad \text{for all } t.
\]

One may analyse this relation by considering special values of \(t \) or by differentiating, for instance. Differentiating twice, we get \(c_1 e^t = 0 \) for all \(t \), hence also \(c_1 = 0 \). The given relation may thus be reduced to

\[
c_2 t + c_3 = 0 \quad \text{for all } t.
\]

- Letting \(t = 0 \) and \(t = 1 \), we now get \(c_3 = 0 = c_2 + c_3 \). This implies that \(c_k = 0 \) for all \(k \), so the given functions are linearly independent.
Linear independence of solutions

Theorem 2.4 – Linear independence of solutions

Suppose that \(y_1(t), y_2(t), \ldots, y_n(t) \) are solutions of the \(n \times n \) system

\[
y'(t) = A(t)y(t). \tag{LHS}
\]

Then \(y_1(t), y_2(t), \ldots, y_n(t) \) are linearly independent functions if and only if \(y_1(0), y_2(0), \ldots, y_n(0) \) are linearly independent vectors.

- The solutions of an \(n \times n \) linear homogeneous system form a vector space of dimension \(n \). In fact, let \(v_1, v_2, \ldots, v_n \) be any basis of \(\mathbb{R}^n \) and let \(y_k(t) \) be the unique solution of the initial value problem

 \[
y_k'(t) = A(t)y_k(t), \quad y_k(0) = v_k.
\]

- Then \(y_1(t), y_2(t), \ldots, y_n(t) \) are easily seen to form a basis for the space of solutions. However, such a basis is not usually explicit.
We obtain a basis of solutions for the linear homogeneous system

\[y'(t) = A(t)y(t), \quad A(t) = \begin{bmatrix} 1 & 0 \\ e^t & 2 \end{bmatrix}. \]

In this case, \(A(t) \) is lower triangular, so it is easier to look at the corresponding equations one by one. Let us start by writing

\[x'(t) = x(t), \quad y'(t) = e^t x(t) + 2y(t). \]

When it comes to the leftmost equation, one clearly has

\[x'(t) = x(t) \quad \implies \quad x(t) = c_1 e^t. \]

We now insert this fact in the rightmost equation to find that

\[y'(t) - 2y(t) = e^t x(t) = c_1 e^{2t}. \]

This is a first-order linear equation with integrating factor \(\mu = e^{-2t} \).
Multiplying by the integrating factor, we conclude that

\[(e^{-2t}y)' = c_1 \implies e^{-2t}y(t) = c_1 t + c_2 \]

\[\implies y(t) = (c_1 t + c_2)e^{2t}.\]

This shows that every solution of the system has the form

\[y(t) = \begin{bmatrix} c_1 e^t \\ (c_1 t + c_2)e^{2t} \end{bmatrix} = c_1 \begin{bmatrix} e^t \\ te^{2t} \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ e^{2t} \end{bmatrix}.\]

In other words, every solution is a linear combination of

\[y_1(t) = \begin{bmatrix} e^t \\ te^{2t} \end{bmatrix}, \quad y_2(t) = \begin{bmatrix} 0 \\ e^{2t} \end{bmatrix}\]

and these functions form a basis for the space of solutions.
When \(A \) is constant, the linear system \(y'(t) = Ay(t) \) can always be solved explicitly by relating \(A \) to its Jordan form, say \(J = B^{-1}AB \).

More precisely, the change of variables \(z(t) = B^{-1}y(t) \) gives

\[
z'(t) = B^{-1}y'(t) = B^{-1}Ay(t) = B^{-1}ABz(t) = Jz(t).
\]

This is a linear system that involves a lower triangular matrix, while each of the corresponding equations has the form

\[
z'_k = \lambda_k z_k \quad \text{or} \quad z'_k = z_{k-1} + \lambda_k z_k.
\]

In particular, each of these equations is first-order linear and one may determine the variables \(z_k \) inductively using integrating factors.

The corresponding formula for the solution \(y(t) = Bz(t) \) turns out to be simple when \(A \) is diagonalisable but a bit technical, otherwise. We shall thus use another approach to deal with the general case later.
Consider the $n \times n$ linear system $y'(t) = Ay(t)$ in the case that A is constant and diagonalisable. Let v_1, v_2, \ldots, v_n be linearly independent eigenvectors and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the corresponding eigenvalues. Then every solution of the system has the form

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \ldots + c_n e^{\lambda_n t} v_n.$$

- The coefficients c_k may be taken to be real, if the eigenvalues of A are all real. Otherwise, the coefficients c_k will generally be complex.
- To prove this theorem, we note that each $y_k(t) = e^{\lambda_k t} v_k$ satisfies

$$y_k'(t) = \lambda_k e^{\lambda_k t} v_k = e^{\lambda_k t} Av_k = Ay_k(t).$$

This gives n solutions which are linearly independent when $t = 0$, so every other solution must be a linear combination of them.
Eigenvector method: Example 1

- We use the eigenvector method to solve the linear system

 \[y'(t) = Ay(t), \quad A = \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix}. \]

- The eigenvalues of \(A \) are the roots of the characteristic polynomial

 \[f(\lambda) = \lambda^2 - (\text{tr } A)\lambda + \det A = \lambda^2 - 8\lambda + 7 = (\lambda - 7)(\lambda - 1), \]

 namely \(\lambda_1 = 7 \) and \(\lambda_2 = 1 \). These correspond to the eigenvectors

 \[\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}. \]

- According to the previous theorem, the solution of the system is

 \[y(t) = c_1 e^{7t} \mathbf{v}_1 + c_2 e^t \mathbf{v}_2 = \begin{bmatrix} c_1 e^{7t} + c_2 e^t \\ 2c_1 e^{7t} - c_2 e^t \end{bmatrix}. \]
Eigenvector method: Example 2

- We use the eigenvector method to solve the linear system

\[y'(t) = Ay(t), \quad A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 2 & 1 & 4 \end{bmatrix}. \]

- Since \(A \) is lower triangular, its eigenvalues \(\lambda = 1, 3, 4 \) are merely the diagonal entries of \(A \). These are distinct, so \(A \) is diagonalisable and one may easily check that the corresponding eigenvectors are

\[\mathbf{v}_1 = \begin{bmatrix} -3 \\ 3 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \]

- In view of the previous theorem, the solution of the system is thus

\[y(t) = c_1 e^t \mathbf{v}_1 + c_2 e^{3t} \mathbf{v}_2 + c_3 e^{4t} \mathbf{v}_3 = \begin{bmatrix} -3c_1 e^t \\ 3c_1 e^t - c_2 e^{3t} \\ c_1 e^t + c_2 e^{3t} + c_3 e^{4t} \end{bmatrix}. \]
Given a square matrix A, we define its exponential e^A as the series

$$e^A = I + A + \frac{1}{2!} A^2 + \ldots = \sum_{k=0}^{\infty} \frac{1}{k!} A^k.$$

It can be shown that this series converges for every square matrix A.

- To compute the powers of a square matrix, one relates them to the powers of its Jordan form $J = B^{-1} A B$ using the computation

$$A^k = (BJB^{-1})^k = BJ^k B^{-1}.$$

- A similar approach can be used for the exponential of A since

$$e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k = \sum_{k=0}^{\infty} \frac{1}{k!} BJ^k B^{-1} = Be^J B^{-1}.$$
Matrix exponential: Properties

Theorem 2.7 – Properties of the matrix exponential

Suppose A, B are $n \times n$ matrices and let $\Phi(t) = e^{tA}$ for all $t \in \mathbb{R}$.

1. The exponential property $e^{A+B} = e^A e^B$ holds when $AB = BA$, but this property is generally false for arbitrary matrices.
2. The exponential function $\Phi(t) = e^{tA}$ is such that $\Phi'(t) = A\Phi(t)$. In particular, it is a matrix solution of the system $y'(t) = Ay(t)$.
3. The columns of $\Phi(t) = e^{tA}$ are vector solutions of $y'(t) = Ay(t)$ and they also form a basis for the space of all solutions.

- The second property may be stated simply as $(e^{tA})' = Ae^{tA}$. This resembles the chain rule for the standard exponential function.
- The product rule $(AB)' = A'B + AB'$ also holds for matrix-valued functions, but the chain rule $(A^2)' = 2AA'$ is generally false.
Matrix exponential: Jordan forms

Theorem 2.8 – Matrix exponential of a Jordan form

Suppose that J is a $k \times k$ Jordan block with eigenvalue λ. Then the exponential e^{tJ} is a lower triangular matrix and the entries that lie i steps below the diagonal are equal to $\frac{t^j}{j!}e^{\lambda t}$ for each $0 \leq j < k$.

- For instance, the exponential of a 3×3 Jordan block is given by

\[
J = \begin{pmatrix}
\lambda & 1 & \\
1 & \lambda & \\
1 & 1 & \lambda
\end{pmatrix} \implies e^{tJ} = \begin{pmatrix}
e^{\lambda t} & te^{\lambda t} & e^{\lambda t} \\
t e^{\lambda t} & e^{\lambda t} & \\
\frac{t^2}{2}e^{\lambda t} & te^{\lambda t} & e^{\lambda t}
\end{pmatrix}.
\]

- The exponential of a Jordan form is obtained by exponentiating each Jordan block separately. As a typical example, one has

\[
J = \begin{pmatrix}
2 & & \\
3 & & \\
1 & 3 &
\end{pmatrix} \implies e^{tJ} = \begin{pmatrix}
e^{2t} & & \\
e^{3t} & & \\
te^{3t} & e^{3t} &
\end{pmatrix}.
\]
We compute the matrix exponential of the diagonalisable matrix

\[A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}. \]

The characteristic polynomial of this matrix is given by

\[f(\lambda) = \lambda^2 - (\text{tr } A)\lambda + \det A = \lambda^2 - 7\lambda + 10 = (\lambda - 2)(\lambda - 5), \]

so the eigenvalues are real and distinct, namely \(\lambda_1 = 2 \) and \(\lambda_2 = 5 \).

The corresponding eigenvectors are easily found to be

\[\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \]

Once we now merge the eigenvectors to form a matrix \(B \), we get

\[B = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \quad \implies \quad J = B^{-1}AB = \begin{bmatrix} 2 \\ 5 \end{bmatrix}. \]
Since the Jordan form \(J \) is diagonal, the same is true for \(e^{tJ} \) and

\[
J = B^{-1}AB = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \implies e^{tJ} = \begin{bmatrix} e^{2t} \\ e^{5t} \end{bmatrix}.
\]

As for the exponential of the original matrix \(A \), this is given by

\[
J = B^{-1}AB \implies A = BJB^{-1} \implies e^{tA} = Be^{tJ}B^{-1}.
\]

In view of our computations above, we must thus have

\[
e^{tA} = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} e^{2t} \\ e^{5t} \end{bmatrix} \begin{bmatrix} 1/3 \\ -1/3 \end{bmatrix}
= \frac{1}{3} \begin{bmatrix} e^{2t} + 2e^{5t} & -e^{2t} + e^{5t} \\ -2e^{2t} + 2e^{5t} & 2e^{2t} + e^{5t} \end{bmatrix}.
\]

The exact same approach applies for any diagonalisable matrix \(A \).
We compute the matrix exponential of the non-diagonalisable matrix

\[A = \begin{bmatrix} 9 & -4 \\ 9 & -3 \end{bmatrix}. \]

In this case, the characteristic polynomial of \(A \) is given by

\[f(\lambda) = \lambda^2 - (\text{tr } A)\lambda + \det A = \lambda^2 - 6\lambda + 9 = (\lambda - 3)^2, \]

so the only eigenvalue is \(\lambda = 3 \). The only eigenvector turns out to be

\[\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}. \]

This implies that \(A \) is not diagonalisable and that the Jordan form is

\[J = B^{-1}AB = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \quad \Rightarrow \quad e^{tJ} = \begin{bmatrix} e^{3t} & te^{3t} \\ te^{3t} & e^{3t} \end{bmatrix}. \]

Let us now find a matrix \(B \) such that \(J = B^{-1}AB \) is in Jordan form.
Pick any nonzero vector v_1 which is not an eigenvector and let

$$v_2 = (A - \lambda I)v_1, \quad B = \begin{bmatrix} v_1 & v_2 \end{bmatrix}.$$

There are obviously infinitely many choices and one possibility is

$$v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad v_2 = (A - 3I)v_1 = \begin{bmatrix} 6 \\ 9 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 6 \\ 0 & 9 \end{bmatrix}.$$

In view of our computations above, we must thus have

$$e^{tA} = B e^{tJ} B^{-1} = \begin{bmatrix} 1 & 6 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} e^{3t} & te^{3t} \\ te^{3t} & e^{3t} \end{bmatrix} \begin{bmatrix} 1 & -2/3 \\ 0 & 1/9 \end{bmatrix}$$

$$= e^{3t} \begin{bmatrix} 1 + 6t & -4t \\ 9t & 1 - 6t \end{bmatrix}.$$

This approach applies for any non-diagonalisable 2×2 matrix A.
Finally, we consider a real matrix \(A \) with complex eigenvalues, say
\[
A = \begin{bmatrix}
1 & -1 \\
1 & 1
\end{bmatrix}.
\]

The characteristic polynomial of this matrix is easily found to be
\[
f(\lambda) = \lambda^2 - (\text{tr } A)\lambda + \det A = \lambda^2 - 2\lambda + 2 = (\lambda - 1)^2 + 1.
\]

The eigenvalues \(\lambda = 1 \pm i \) are complex conjugates of one another and the same is true for the corresponding eigenvectors which are given by
\[
\mathbf{v}_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ i \end{bmatrix}.
\]

This implies that \(A \) is diagonalisable and that we also have
\[
B = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \implies J = B^{-1}AB = \begin{bmatrix} 1 + i & 1 \\ 1 - i & 1 \end{bmatrix}.
\]

In particular, one may proceed as before to compute \(e^{tJ} \) and then \(e^{tA} \).
Since the Jordan form J is diagonal, the same is true for e^{tJ} and

$$J = B^{-1}AB = \begin{bmatrix} 1 + i & 1 \\ 1 - i & 1 \end{bmatrix} \quad \implies \quad e^{tJ} = \begin{bmatrix} e^{t}e^{it} & \cdot \\ \cdot & e^{t}e^{-it} \end{bmatrix}.$$

In view of our computations above, we must thus have

$$e^{tA} = B e^{tJ} B^{-1} = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \begin{bmatrix} e^{t}e^{it} & \cdot \\ \cdot & e^{t}e^{-it} \end{bmatrix} \begin{bmatrix} 1/2 & i/2 \\ 1/2 & -i/2 \end{bmatrix}$$

$$= \frac{e^{t}}{2} \begin{bmatrix} e^{it} + e^{-it} & i(e^{it} - e^{-it}) \\ i(e^{-it} - e^{it}) & e^{it} + e^{-it} \end{bmatrix}.$$

On the other hand, one has $e^{\pm it} = \cos t \pm i \sin t$, so this implies that

$$e^{tA} = \frac{e^{t}}{2} \begin{bmatrix} 2 \cos t & -2 \sin t \\ 2 \sin t & 2 \cos t \end{bmatrix} = \begin{bmatrix} e^{t} \cos t & -e^{t} \sin t \\ e^{t} \sin t & e^{t} \cos t \end{bmatrix}.$$

Needless to say, e^{tA} will always turn out to be real when A is real.
Definition 2.9 – Fundamental matrix

We say that $\Phi(t)$ is a fundamental matrix for a linear homogeneous system, if the columns of $\Phi(t)$ form a basis for the space of solutions.

- The most common example is the matrix exponential $\Phi(t) = e^{tA}$. It is a fundamental matrix for the system $y'(t) = Ay(t)$, if A is constant.

Theorem 2.10 – Properties of fundamental matrices

Let $\Phi(t)$ be a fundamental matrix for the system $y'(t) = A(t)y(t)$.

1. Every solution is a linear combination of the columns of $\Phi(t)$.
2. Every solution has the form $y(t) = \Phi(t)c$ for some vector c.
3. The fundamental matrix itself is a matrix solution of the system. In other words, one has the matrix identity $\Phi'(t) = A(t)\Phi(t)$.

It is only in a few special cases that one may explicitly determine a fundamental matrix for the linear system $y'(t) = A(t)y(t)$.

When $A(t)$ is either upper or lower triangular, the system can be solved explicitly by solving the corresponding equations one by one. Let $y_k(t)$ be the unique solution of the initial value problem

$$y'_k(t) = A(t)y_k(t), \quad y_k(0) = e_k.$$

Then $y_1(t), y_2(t), \ldots, y_n(t)$ form a basis for the space of solutions.

When $A(t)$ is a matrix that commutes with its antiderivative $B(t)$, a fundamental matrix for the system is given by

$$\Phi(t) = e^{B(t)}, \quad B(t) = \int_0^t A(s) \, ds.$$

This is the case, in particular, when $A(t) = A$ is a constant matrix.
Let us now turn our attention to the linear inhomogeneous system

\[
y'(t) = A(t)y(t) + b(t). \tag{LIS}
\]

When it comes to the special case \(b(t) = 0 \), there is a fundamental matrix \(\Phi(t) \) which satisfies the identity \(\Phi'(t) = A(t)\Phi(t) \) and every solution has the form \(y(t) = \Phi(t)c \) for some constant vector \(c \).

To deal with the general case, we look for solutions that have the form \(y(t) = \Phi(t)c(t) \), where \(c(t) \) is not necessarily constant. Since

\[
y'(t) = \Phi'(t)c(t) + \Phi(t)c'(t)
\]

\[
= A(t)\Phi(t)c(t) + \Phi(t)c'(t)
\]

\[
= A(t)y(t) + \Phi(t)c'(t),
\]

we do obtain a solution of (LIS), provided that \(\Phi(t)c'(t) = b(t) \).

Thus, one may use \(\Phi(t) \) to solve the inhomogeneous system as well.
Theorem 2.11 – Variation of parameters

Consider the linear inhomogeneous system

\[y'(t) = A(t)y(t) + b(t). \] \hfill (LIS)

If \(A(t) \) and \(b(t) \) are continuous, then every solution has the form

\[y(t) = \Phi(t)c + \Phi(t) \int \Phi(t)^{-1}b(t) \, dt, \]

where \(c \) is a constant vector and \(\Phi(t) \) is a fundamental matrix for the associated linear homogeneous system \(y'(t) = A(t)y(t) \).

The integral term in the equation above is itself a particular solution of the system. According to the theorem, every solution is thus the sum of the homogeneous solution \(\Phi(t)c \) and a particular solution.
We use variation of parameters to solve the inhomogeneous system

$$y'(t) = Ay(t) + b(t), \quad A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad b(t) = \begin{bmatrix} 1 \\ t \end{bmatrix}.$$

Since A is constant, a fundamental matrix is $\Phi(t) = e^{tA}$ and thus

$$y(t) = e^{tA}c + e^{tA} \int e^{-tA}b(t) \, dt$$

$$= \begin{bmatrix} e^t & 0 \\ te^t & e^t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} e^t & 0 \\ te^t & e^t \end{bmatrix} \int \begin{bmatrix} e^{-t} & 0 \\ -te^{-t} & e^{-t} \end{bmatrix} \begin{bmatrix} 1 \\ t \end{bmatrix} \, dt$$

$$= \begin{bmatrix} c_1e^t \\ c_1te^t + c_2e^t \end{bmatrix} + \begin{bmatrix} c_1te^t + c_2e^t \\ c_1te^t + c_2e^t + te^t \end{bmatrix} \int \begin{bmatrix} e^{-t} & 0 \\ -te^{-t} & e^{-t} \end{bmatrix} \begin{bmatrix} -e^{-t} \\ 0 \end{bmatrix} \, dt$$

$$= \begin{bmatrix} c_1e^t - 1 \\ c_1te^t + c_2e^t - t \end{bmatrix}.$$
Suppose that we need to solve a scalar linear equation such as

\[y'''(t) - 5y''(t) + 7y'(t) - 3y(t) = 0.\]

This is a 3rd-order equation, so one may express it as a 3×3 system.

More precisely, let y be the vector with entries y, y', y'' and note that

\[
\begin{bmatrix}
y \\
y' \\
y''
\end{bmatrix}
\implies
\begin{bmatrix}
y' \\
y'' \\
y'''
\end{bmatrix}
= \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
3 & -7 & 5
\end{bmatrix}
\begin{bmatrix}
y \\
y' \\
y''
\end{bmatrix}
= Ay.
\]

Since the scalar equation is linear, the same is true for the system, so one may determine y using methods we have already developed.

This kind of approach is certainly valid, but it is not very efficient, as we are only interested in the first entry of y. It is thus worth having some related results that deal with scalar equations directly.
Theorem 2.12 – Linear homogeneous equations

Consider the scalar linear homogeneous equation

\[a_n y^{(n)}(t) + \ldots + a_2 y''(t) + a_1 y'(t) + a_0 y(t) = 0. \]

(LHE)

If the coefficients \(a_k\) are all constant, then one may obtain a basis of solutions by solving the corresponding characteristic equation

\[a_n \lambda^n + \ldots + a_2 \lambda^2 + a_1 \lambda + a_0 = 0 \]

and by associating each root \(\lambda\) with solutions of (LHE) as follows.

1. If a real root \(\lambda\) has multiplicity \(k\), it gets associated with the \(k\) functions \(\{t^j e^{\lambda t}\}_{j=0}^{k-1}\), namely with \(e^{\lambda t}, te^{\lambda t}, \ldots, t^{k-1} e^{\lambda t}\).

2. If a pair of complex roots \(\lambda = a \pm bi\) has multiplicity \(k\), it gets associated with the \(2k\) functions \(\{t^j e^{at} \sin(bt), t^j e^{at} \cos(bt)\}_{j=0}^{k-1}\).
We use the previous theorem to solve the homogeneous equation
\[y'''(t) - 5y''(t) + 7y'(t) - 3y(t) = 0. \]

In this case, the associated characteristic equation is given by
\[\lambda^3 - 5\lambda^2 + 7\lambda - 3 = 0. \]

Noting that \(\lambda = 1 \) is a root, one easily finds that
\[\lambda^3 - 5\lambda^2 + 7\lambda - 3 = (\lambda - 1)(\lambda^2 - 4\lambda + 3) = (\lambda - 1)^2(\lambda - 3). \]

This means that \(\lambda = 1 \) is a double root, while \(\lambda = 3 \) is a simple root. Thus, a basis of solutions is formed by the functions \(e^t, te^t, e^{3t} \) and every solution of the given equation has the form
\[y(t) = c_1 e^t + c_2 te^t + c_3 e^{3t}. \]
Let us now solve an initial value problem such as

$$y''(t) - y(t) = 0, \quad y(0) = 1, \quad y'(0) = 3.$$

In this case, the associated characteristic equation gives

$$\lambda^2 - 1 = 0 \implies (\lambda + 1)(\lambda - 1) = 0 \implies \lambda = -1, 1.$$

Since the roots are both simple, every solution has the form

$$y(t) = c_1 e^t + c_2 e^{-t}.$$

Next, we turn to the initial conditions and we note that

$$y(t) = c_1 e^t + c_2 e^{-t} \implies 1 = y(0) = c_1 + c_2,$$
$$y'(t) = c_1 e^t - c_2 e^{-t} \implies 3 = y'(0) = c_1 - c_2.$$

Solving this system of equations, we find that $c_1 = 2$ and $c_2 = -1$. Thus, the unique solution is given by $y(t) = 2e^t - e^{-t}$.
The equation that describes a simple harmonic oscillator is

\[m\ddot{y}(t) = -ky(t). \]

Here, the constants \(k, m \) are both positive, so one may also write

\[\ddot{y}(t) + \omega^2 y(t) = 0, \quad \omega = \sqrt{k/m}. \]

Solving the associated characteristic equation, we now get

\[\lambda^2 + \omega^2 = 0 \quad \implies \quad \lambda^2 = -\omega^2 \quad \implies \quad \lambda = \pm i\omega. \]

This is a pair of complex roots, so every solution has the form

\[y(t) = c_1 \sin(\omega t) + c_2 \cos(\omega t). \]

In particular, every solution of the given equation is periodic.
As our last example on homogeneous equations, we now solve
\[y'''(t) + 7y''(t) + 19y'(t) + 13y(t) = 0. \]

In this case, the associated characteristic equation is given by
\[\lambda^3 + 7\lambda^2 + 19\lambda + 13 = 0. \]

Noting that \(\lambda = -1 \) is a root, one may factor the cubic as
\[\lambda^3 + 7\lambda^2 + 19\lambda + 13 = (\lambda + 1)(\lambda^2 + 6\lambda + 13). \]

The roots of the quadratic factor are easily found to be
\[\lambda = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 13}}{2} = \frac{-6 \pm 4i}{2} = -3 \pm 2i. \]

We may thus conclude that every solution has the form
\[y(t) = c_1 e^{-t} + c_2 e^{-3t} \sin(2t) + c_3 e^{-3t} \cos(2t). \]
Suppose that we need to solve an inhomogeneous equation such as
\[y''(t) - 3y'(t) + 2y(t) = 2t + 5. \]

The solution of such an equation can be expressed as the sum of the homogeneous solution \(y_h \) and a particular solution \(y_p \). More precisely, the difference \(z = y - y_p \) between any two solutions satisfies
\[z''(t) - 3z'(t) + 2z(t) = 0, \]
so it is a solution of the corresponding homogeneous equation.

This proves the useful identity \(y = y_h + y_p \). We already know how to find the homogeneous solution \(y_h \), so we need only worry about \(y_p \).

There are two methods for finding a particular solution: the method of undetermined coefficients and variation of parameters. The former is generally simpler, but it only applies in a few special cases.
Undetermined coefficients: Main result

Theorem 2.13 – Undetermined coefficients

Consider the scalar linear inhomogeneous equation

\[a_n y^{(n)}(t) + \ldots + a_2 y''(t) + a_1 y'(t) + a_0 y(t) = f(t). \]

Suppose that the coefficients \(a_k \) are all constant and that the right hand side \(f(t) \) is a linear combination of terms that have the form

\[t^j e^{\lambda t}, \quad t^j e^{at} \sin(bt), \quad t^j e^{at} \cos(bt). \]

Then the solution \(y(t) \) satisfies a higher-order homogeneous equation, so it can itself be expressed as a linear combination of such terms.

One typically uses this theorem to write down an explicit formula for a particular solution \(y_p \). It is easy to predict the terms that appear in the formula, but their exact coefficients need to be determined.
The general rules for finding a particular solution y_p are the following.

1. If $f(t)$ contains the term $t^ke^{\lambda t}$, then y_p contains the expression

$$
\sum_{j=0}^{k} A_j t^j e^{\lambda t} = A_k t^k e^{\lambda t} + \ldots + A_1 t e^{\lambda t} + A_0 e^{\lambda t}.
$$

2. If $f(t)$ contains either the term $t^k e^{at} \sin(bt)$ or the term $t^k e^{at} \cos(bt)$, but not necessarily both, then y_p contains the expression

$$
\sum_{j=0}^{k} A_j t^j e^{at} \sin(bt) + \sum_{j=0}^{k} B_j t^j e^{at} \cos(bt).
$$

3. If either of the expressions above repeats part of the homogeneous solution, then it needs to be multiplied by t repeatedly until it no longer contains terms which appear in the homogeneous solution.
Let us explain the overall approach by looking at the special case

\[y''(t) - y(t) = f(t). \]

Our initial guess for a particular solution \(y_p \) is dictated by the right hand side \(f(t) \). Some typical choices appear in the table below.

<table>
<thead>
<tr>
<th>(f(t))</th>
<th>(y_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t^2 e^{2t})</td>
<td>(A t^2 e^{2t} + B t e^{2t} + C e^{2t})</td>
</tr>
<tr>
<td>(t e^{2t} - e^{3t})</td>
<td>(A t e^{2t} + B e^{2t} + C e^{3t})</td>
</tr>
<tr>
<td>(t^3 + 1)</td>
<td>(A t^3 + B t^2 + C t + D)</td>
</tr>
<tr>
<td>(t + \cos t)</td>
<td>(A t + B + C \sin t + D \cos t)</td>
</tr>
</tbody>
</table>

These choices are dictated by rules 1 and 2. According to the last rule, we also need to adjust our initial choice whenever it repeats part of the homogeneous solution. In this case, we have \(y_h = c_1 e^t + c_2 e^{-t} \), so there is no overlap with \(y_p \) and thus no need for adjustments.
We use undetermined coefficients in order to solve the equation

\[y''(t) - 3y'(t) + 2y(t) = 2t + 5. \]

We have \(y = y_h + y_p \) and the homogeneous solution is given by

\[\lambda^2 - 3\lambda + 2 = 0 \quad \Rightarrow \quad (\lambda - 1)(\lambda - 2) = 0 \]

\[\Rightarrow \quad y_h = c_1e^t + c_2e^{2t}. \]

To find a particular solution \(y_p \), we let \(y_p = At + B \). This gives

\[y_p'' - 3y_p' + 2y_p = -3A + 2At + 2B, \]

so we need to have \(2A = 2 \) and \(2B - 3A = 5 \). It easily follows that

\[A = 1 \quad \Rightarrow \quad B = 4 \quad \Rightarrow \quad y = c_1e^t + c_2e^{2t} + t + 4. \]
Undetermined coefficients: Example 2

- We use undetermined coefficients in order to solve the equation

$$y''(t) + 5y'(t) + 6y(t) = 8e^{2t}.$$

- Once again, $y = y_h + y_p$ and the homogeneous solution is given by

$$\lambda^2 + 5\lambda + 6 = 0 \implies (\lambda + 2)(\lambda + 3) = 0$$

$$\implies y_h = c_1e^{-2t} + c_2e^{-3t}.$$

- To find a particular solution y_p, we let $y_p = Ae^{2t}$. This gives

$$y_p'' + 5y_p' + 6y_p = 4Ae^{2t} + 5(2Ae^{2t}) + 6Ae^{2t} = 20Ae^{2t},$$

so we need to have $20A = 8$. In other words, $A = 2/5$ and thus

$$y = y_h + y_p = c_1e^{-2t} + c_2e^{-3t} + \frac{2}{5}e^{2t}.$$
We use undetermined coefficients in order to solve the equation
\[y''(t) + 5y'(t) + 6y(t) = \sin t. \]

As in the previous example, the homogeneous solution is given by
\[y_h = c_1 e^{-2t} + c_2 e^{-3t}. \]

To find a particular solution, we let \(y_p = A \sin t + B \cos t \) and we note that \(y'_p = A \cos t - B \sin t \), while \(y''_p = -A \sin t - B \cos t \). This gives
\[y''_p + 5y'_p + 6y_p = 5(A - B) \sin t + 5(A + B) \cos t, \]
so we need to have \(A - B = 1/5 \) and \(A + B = 0 \).

Solving these two equations, we get \(A = 1/10 \) and \(B = -1/10 \), so
\[y = y_h + y_p = c_1 e^{-2t} + c_2 e^{-3t} + \frac{1}{10} \sin t - \frac{1}{10} \cos t. \]
We use undetermined coefficients in order to solve the equation

\[y''(t) + y(t) = 2 \sin t + 4e^t. \]

The homogeneous solution \(y_h \) can be found by noting that

\[\lambda^2 + 1 = 0 \quad \Rightarrow \quad \lambda = \pm i \quad \Rightarrow \quad y_h = c_1 \sin t + c_2 \cos t. \]

Let us now worry about the particular solution \(y_p \). Based on the right hand side of the given equation, a natural guess for \(y_p \) would be

\[y_p = A \sin t + B \cos t + Ce^t. \]

However, this function repeats terms that are already present in \(y_h \), so we need to adjust these terms and seek a solution of the form

\[y_p = At \sin t + Bt \cos t + Ce^t. \]
Differentiating the last equation twice, one finds that

\[y_p = At \sin t + Bt \cos t + Ce^t, \]
\[y'_p = A \sin t + At \cos t + B \cos t - Bt \sin t + Ce^t, \]
\[y''_p = 2A \cos t - At \sin t - 2B \sin t - Bt \cos t + Ce^t. \]

We need to ensure that \(y''_p + y_p = 2 \sin t + 4e^t \) and we also have

\[y''_p + y_p = 2A \cos t - 2B \sin t + 2Ce^t \]

by above. Comparing these two equations, we arrive at the system

\[2A = 0, \quad -2B = 2, \quad 2C = 4. \]

This determines the coefficients \(A, B \) and \(C \), so the solution is

\[y = y_h + y_p = c_1 \sin t + c_2 \cos t - t \cos t + 2e^t. \]
We use undetermined coefficients in order to solve the equation

\[y''(t) - 2y'(t) + y(t) = 2e^t + 3t + 4. \]

The homogeneous solution \(y_h \) can be found by noting that

\[\lambda^2 - 2\lambda + 1 = 0 \quad \Rightarrow \quad (\lambda - 1)^2 = 0 \quad \Rightarrow \quad y_h = c_1 e^t + c_2 te^t. \]

Next, we turn to the particular solution \(y_p \). Our initial guess

\[y_p = Ae^t + Bt + C \]

repeats part of the homogeneous solution, so this part needs to be adjusted. Since \(te^t \) is also repeating part of \(y_h \), one needs to take

\[y_p = At^2e^t + Bt + C. \]
Differentiating the last equation twice, one easily finds that

\[y_p = At^2e^t + Bt + C, \]
\[y_p' = 2Ate^t + At^2e^t + B, \]
\[y_p'' = 2Ae^t + 4Ate^t + At^2e^t, \]
\[y_p'' - 2y_p' + y_p = 2Ae^t + Bt + C - 2B. \]

On the other hand, we need to ensure that the solution \(y_p \) satisfies

\[y_p'' - 2y_p' + y_p = 2e^t + 3t + 4. \]

Comparing these two expressions, we arrive at the system

\[2A = 2, \quad B = 3, \quad C - 2B = 4. \]

This determines the coefficients \(A, B \) and \(C \), so the solution is

\[y = y_h + y_p = c_1e^t + c_2te^t + t^2e^t + 3t + 10. \]
Linear independence and Wronskian

Definition 2.14 – Wronskian

The Wronskian of the functions $y_1(t), y_2(t), \ldots, y_n(t)$ is defined as

$$W(t) = \det \begin{bmatrix} y_1(t) & y_2(t) & \cdots & y_n(t) \\ y'_1(t) & y'_2(t) & \cdots & y'_n(t) \\ \vdots & \vdots & \ddots & \vdots \\ y^{(n-1)}_1(t) & y^{(n-1)}_2(t) & \cdots & y^{(n-1)}_n(t) \end{bmatrix}.$$

Theorem 2.15 – Linear independence and Wronskian

Suppose that the Wronskian of some scalar functions is not identically zero. Then these scalar functions are linearly independent.

- The converse of this theorem is not true in general. For instance, the Wronskian of the functions $y_1(t) = t^2$ and $y_2(t) = t|t|$ is identically zero, but these functions are linearly independent.
Consider the general scalar linear inhomogeneous equation

\[a_n(t)y^{(n)}(t) + \ldots + a_1(t)y'(t) + a_0(t)y(t) = f(t). \]

(LIE)

Suppose that \(y_1(t), y_2(t), \ldots, y_n(t) \) are linearly independent solutions of the associated homogeneous equation. A particular solution of (LIE) is then \(y_p(t) = c_1(t)y_1(t) + c_2(t)y_2(t) + \ldots + c_n(t)y_n(t) \), where the coefficients \(c_k(t) \) are determined using the equation

\[
\begin{bmatrix}
 c_1'(t) \\
 c_2'(t) \\
 \vdots \\
 c_n'(t)
\end{bmatrix} =
\begin{bmatrix}
 y_1(t) & y_2(t) & \ldots & y_n(t) \\
 y_1'(t) & y_2'(t) & \ldots & y_n'(t) \\
 \vdots & \vdots & \ddots & \vdots \\
 y_1^{(n-1)}(t) & y_2^{(n-1)}(t) & \ldots & y_n^{(n-1)}(t)
\end{bmatrix}^{-1}
\begin{bmatrix}
 0 \\
 \vdots \\
 0 \\
 f(t)/a_n(t)
\end{bmatrix}.
\]
Theorem 2.17 – Variation of parameters (Second-order case)

Suppose that \(y_1(t), y_2(t) \) are linearly independent solutions of

\[
a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0 \tag{LHE}
\]

and consider the corresponding inhomogeneous equation

\[
a(t)y''(t) + b(t)y'(t) + c(t)y(t) = f(t). \tag{LIE}
\]

A particular solution of (LIE) is then provided by the formula

\[
y_p(t) = -y_1(t) \int \frac{y_2(t)f(t)}{a(t)W(t)} \, dt + y_2(t) \int \frac{y_1(t)f(t)}{a(t)W(t)} \, dt,
\]

where \(W(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) \) is the Wronskian of \(y_1 \) and \(y_2 \).
We use variation of parameters to find a particular solution of

\[y''(t) + y(t) = \sec t. \]

The solution of the associated homogeneous equation is given by

\[\lambda^2 + 1 = 0 \quad \Rightarrow \quad \lambda = \pm i \quad \Rightarrow \quad y_h = c_1 \sin t + c_2 \cos t. \]

Letting \(y_1(t) = \sin t \) and \(y_2(t) = \cos t \), we now find that

\[W(t) = \det \begin{bmatrix} \sin t & \cos t \\ \cos t & -\sin t \end{bmatrix} = -\sin^2 t - \cos^2 t = -1. \]

According to the previous theorem, a particular solution is thus

\[y_p(t) = \sin t \int \cos t \cdot \sec t \, dt - \cos t \int \sin t \cdot \sec t \, dt \]

\[= \sin t \int \frac{\cos t}{\cos t} \, dt - \cos t \int \frac{\sin t}{\cos t} \, dt \]

\[= t \sin t + (\cos t) \log(\cos t). \]
Reduction of order

- Suppose that we know one solution y_1 of the homogeneous equation

$$a_n(t)y^{(n)}(t) + \ldots + a_1(t)y'(t) + a_0(t)y(t) = 0 \quad \text{(LHE)}$$

and that we need to solve the associated inhomogeneous equation

$$a_n(t)z^{(n)}(t) + \ldots + a_1(t)z'(t) + a_0(t)z(t) = f(t). \quad \text{(LIE)}$$

- Then the substitution $z = y_1v$ gives rise to an equation for v which involves the derivatives of v but not v itself. Such an equation is a lower-order equation for v', so it is generally easier to solve.

- This approach can be used for any linear inhomogeneous equation. In particular, we are not assuming that the coefficients a_k are constant.

- When it comes to second-order equations, one may use this approach to find all solutions of (LIE), if just one solution of (LHE) is known.
It is easy to check that \(y_1(t) = t^2 \) satisfies the homogeneous equation
\[
t^2 y''(t) - 2ty'(t) + 2y(t) = 0.
\]

We now use this fact to solve the inhomogeneous equation
\[
t^2 z''(t) - 2tz'(t) + 2z(t) = t\sqrt{t}, \quad t > 0.
\]

First of all, we change variables by letting \(z = y_1 v \). This gives
\[
z = t^2 v, \quad z' = 2tv + t^2 v', \quad z'' = 2v + 4tv' + t^2 v''
\]
and the inhomogeneous equation that needs to be solved becomes
\[
t\sqrt{t} = t^2 z'' - 2tz' + 2z
\]
\[
= 2t^2 v + 4t^3 v' + t^4 v'' - 4t^2 v - 2t^3 v' + 2t^2 v
\]
\[
= t^4 v'' + 2t^3 v'.
\]
Setting $w = v'$ for convenience, we now arrive at the equation

$$t^4w' + 2t^3w = t\sqrt{t} \implies w' + 2t^{-1}w = t^{-5/2}.$$

This is a first-order linear equation with integrating factor

$$\mu = \exp \left(\int 2t^{-1} \, dt \right) = e^{2\log t + C} = K t^2.$$

Letting $K = 1$ for simplicity, we may finally conclude that

$$(\mu w)' = t^{-1/2} \implies \mu w = 2t^{1/2} + c_1 \implies w = 2t^{-3/2} + c_1 t^{-2}.$$

Since $v' = w$ and $z = t^2v$ by above, this also implies that

$$v = -4t^{-1/2} - c_1 t^{-1} + c_2 \implies z = -4t\sqrt{t} - c_1 t + c_2 t^2.$$
Summary of available methods

- **Homogeneous systems**: \(y'(t) = A(t)y(t) \).
 - Eigenvector method: if \(A(t) \) is constant and diagonalisable.
 - Matrix exponential: if \(A(t) \) is constant.
 - Solvable equations: if \(A(t) \) is lower/upper triangular.

- **Inhomogeneous systems**: \(y'(t) = A(t)y(t) + b(t) \).
 - Variation of parameters: this method applies in all cases.

- **Homogeneous scalar equations**: \(\sum_{k=0}^{n} a_k(t)y^{(k)}(t) = 0 \).
 - Characteristic equation: if the coefficients \(a_k \) are constant.
 - Reduction of order: if one solution is already known.

- **Inhomogeneous scalar equations**: \(\sum_{k=0}^{n} a_k(t)y^{(k)}(t) = f(t) \).
 - Undetermined coefficients: if \(a_k \) are constant and \(f \) is simple.
 - Variation of parameters: this method applies in all cases.
 - Reduction of order: if one homogeneous solution is known.