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Linear homogeneous systems

Definition 2.1 – Linear homogeneous systems

A linear homogeneous system is a system that has the form

y′(t) = A(t)y(t), (LHS)

where y(t) is the vector of unknowns and A(t) is a square matrix.

Theorem 2.2 – Superposition principle

The set of solutions of a linear homogeneous system is closed under
addition and scalar multiplication. In other words, the sum of any two
solutions is a solution and scalar multiples of solutions are solutions.

The superposition principle asserts that the solutions of (LHS) form a
vector space. If one can find some solutions that form a basis for this
vector space, then every solution will be a linear combination of them.
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Linear independence of functions

Definition 2.3 – Linear independence of functions

The functions y1(t),y2(t), . . . ,yn(t) are called linearly dependent, if
there exist constants c1, c2, . . . , cn which are not all zero such that

c1y1(t) + c2y2(t) + . . .+ cnyn(t) = 0 for all t.

Otherwise, we say that the functions are linearly independent.

Linear independence of vector-valued functions is a bit more subtle
than linear independence of constant vectors. This is because the
coefficients ck are not allowed to depend on t. For instance,

y1(t) =

[

1
0

]

, y2(t) =

[

t
0

]

are linearly independent functions, even though one has y2 = ty1.

3 / 50



Linear independence of functions: Example

We check that y1(t),y2(t),y3(t) are linearly independent when

y1(t) =

[

et

t

]

, y2(t) =

[

t
t

]

, y3(t) =

[

1
1

]

.

Suppose that c1y1(t) + c2y2(t) + c3y3(t) = 0, in which case

c1e
t + c2t+ c3 = c1t+ c2t+ c3 = 0 for all t.

One may analyse this relation by considering special values of t or by
differentiating, for instance. Differentiating twice, we get c1e

t = 0 for
all t, hence also c1 = 0. The given relation may thus be reduced to

c2t+ c3 = 0 for all t.

Letting t = 0 and t = 1, we now get c3 = 0 = c2 + c3. This implies
that ck = 0 for all k, so the given functions are linearly independent.
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Linear independence of solutions

Theorem 2.4 – Linear independence of solutions

Suppose that y1(t),y2(t), . . . ,yn(t) are solutions of the n× n system

y′(t) = A(t)y(t). (LHS)

Then y1(t),y2(t), . . . ,yn(t) are linearly independent functions if and
only if y1(0),y2(0), . . . ,yn(0) are linearly independent vectors.

The solutions of an n× n linear homogeneous system form a vector
space of dimension n. In fact, let v1,v2, . . . ,vn be any basis of Rn

and let yk(t) be the unique solution of the initial value problem

y′

k(t) = A(t)yk(t), yk(0) = vk.

Then y1(t),y2(t), . . . ,yn(t) are easily seen to form a basis for the
space of solutions. However, such a basis is not usually explicit.
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Basis of solutions: Example, page 1

We obtain a basis of solutions for the linear homogeneous system

y′(t) = A(t)y(t), A(t) =

[

1 0
et 2

]

.

In this case, A(t) is lower triangular, so it is easier to look at the
corresponding equations one by one. Let us start by writing

x′(t) = x(t), y′(t) = etx(t) + 2y(t).

When it comes to the leftmost equation, one clearly has

x′(t) = x(t) =⇒ x(t) = c1e
t.

We now insert this fact in the rightmost equation to find that

y′(t)− 2y(t) = etx(t) = c1e
2t.

This is a first-order linear equation with integrating factor µ = e−2t.
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Basis of solutions: Example, page 2

Multiplying by the integrating factor, we conclude that

(e−2ty)′ = c1 =⇒ e−2ty(t) = c1t+ c2

=⇒ y(t) = (c1t+ c2)e
2t.

This shows that every solution of the system has the form

y(t) =

[

c1e
t

(c1t+ c2)e
2t

]

= c1

[

et

te2t

]

+ c2

[

0
e2t

]

.

In other words, every solution is a linear combination of

y1(t) =

[

et

te2t

]

, y2(t) =

[

0
e2t

]

and these functions form a basis for the space of solutions.
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Systems with constant coefficients

When A is constant, the linear system y′(t) = Ay(t) can always be
solved explicitly by relating A to its Jordan form, say J = B−1AB.

More precisely, the change of variables z(t) = B−1y(t) gives

z′(t) = B−1y′(t) = B−1Ay(t) = B−1ABz(t) = Jz(t).

This is a linear system that involves a lower triangular matrix, while
each of the corresponding equations has the form

z′k = λkzk or z′k = zk−1 + λkzk.

In particular, each of these equations is first-order linear and one may
determine the variables zk inductively using integrating factors.

The corresponding formula for the solution y(t) = Bz(t) turns out to
be simple when A is diagonalisable but a bit technical, otherwise. We
shall thus use another approach to deal with the general case later.
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Eigenvector method

Theorem 2.5 – Eigenvector method

Consider the n × n linear system y′(t) = Ay(t) in the case that A is
constant and diagonalisable. Let v1,v2, . . . ,vn be linearly independent
eigenvectors and let λ1, λ2, . . . , λn be the corresponding eigenvalues.
Then every solution of the system has the form

y(t) = c1e
λ1tv1 + c2e

λ2tv2 + . . .+ cne
λntvn.

The coefficients ck may be taken to be real, if the eigenvalues of A
are all real. Otherwise, the coefficients ck will generally be complex.

To prove this theorem, we note that each yk(t) = eλktvk satisfies

y′

k(t) = λke
λktvk = eλktAvk = Ayk(t).

This gives n solutions which are linearly independent when t = 0, so
every other solution must be a linear combination of them.
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Eigenvector method: Example 1

We use the eigenvector method to solve the linear system

y′(t) = Ay(t), A =

[

3 2
4 5

]

.

The eigenvalues of A are the roots of the characteristic polynomial

f(λ) = λ2 − (trA)λ+ detA = λ2 − 8λ+ 7 = (λ− 7)(λ− 1),

namely λ1 = 7 and λ2 = 1. These correspond to the eigenvectors

v1 =

[

1
2

]

, v2 =

[

1
−1

]

.

According to the previous theorem, the solution of the system is

y(t) = c1e
7tv1 + c2e

tv2 =

[

c1e
7t + c2e

t

2c1e
7t − c2e

t

]

.
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Eigenvector method: Example 2

We use the eigenvector method to solve the linear system

y′(t) = Ay(t), A =





1 0 0
2 3 0
2 1 4



 .

Since A is lower triangular, its eigenvalues λ = 1, 3, 4 are merely the
diagonal entries of A. These are distinct, so A is diagonalisable and
one may easily check that the corresponding eigenvectors are

v1 =





−3
3
1



 , v2 =





0
−1
1



 , v3 =





0
0
1



 .

In view of the previous theorem, the solution of the system is thus

y(t) = c1e
tv1 + c2e

3tv2 + c3e
4tv3 =





−3c1e
t

3c1e
t − c2e

3t

c1e
t + c2e

3t + c3e
4t



 .
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Matrix exponential: Definition

Definition 2.6 – Matrix exponential

Given a square matrix A, we define its exponential eA as the series

eA = I +A+
1

2!
A2 + . . . =

∞
∑

k=0

1

k!
Ak.

It can be shown that this series converges for every square matrix A.

To compute the powers of a square matrix, one relates them to the
powers of its Jordan form J = B−1AB using the computation

Ak = (BJB−1)k = BJkB−1.

A similar approach can be used for the exponential of A since

eA =
∞
∑

k=0

1

k!
Ak =

∞
∑

k=0

1

k!
BJkB−1 = BeJB−1.
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Matrix exponential: Properties

Theorem 2.7 – Properties of the matrix exponential

Suppose A,B are n× n matrices and let Φ(t) = etA for all t ∈ R.

1 The exponential property eA+B = eAeB holds when AB = BA,
but this property is generally false for arbitrary matrices.

2 The exponential function Φ(t) = etA is such that Φ′(t) = AΦ(t).
In particular, it is a matrix solution of the system y′(t) = Ay(t).

3 The columns of Φ(t) = etA are vector solutions of y′(t) = Ay(t)
and they also form a basis for the space of all solutions.

The second property may be stated simply as (etA)′ = AetA. This
resembles the chain rule for the standard exponential function.

The product rule (AB)′ = A′B +AB′ also holds for matrix-valued
functions, but the chain rule (A2)′ = 2AA′ is generally false.
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Matrix exponential: Jordan forms

Theorem 2.8 – Matrix exponential of a Jordan form

Suppose that J is a k × k Jordan block with eigenvalue λ. Then the
exponential etJ is a lower triangular matrix and the entries that lie i
steps below the diagonal are equal to tj

j! e
λt for each 0 ≤ j < k.

For instance, the exponential of a 3× 3 Jordan block is given by

J =





λ
1 λ

1 λ



 =⇒ etJ =





eλt

teλt eλt

t2

2 e
λt teλt eλt



 .

The exponential of a Jordan form is obtained by exponentiating each
Jordan block separately. As a typical example, one has

J =





2

3
1 3



 =⇒ etJ =





e2t

e3t

te3t e3t



 .
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Matrix exponential: Example 1, page 1

We compute the matrix exponential of the diagonalisable matrix

A =

[

4 1
2 3

]

.

The characteristic polynomial of this matrix is given by

f(λ) = λ2 − (trA)λ+ detA = λ2 − 7λ+ 10 = (λ− 2)(λ− 5),

so the eigenvalues are real and distinct, namely λ1 = 2 and λ2 = 5.

The corresponding eigenvectors are easily found to be

v1 =

[

1
−2

]

, v2 =

[

1
1

]

.

Once we now merge the eigenvectors to form a matrix B, we get

B =

[

1 1
−2 1

]

=⇒ J = B−1AB =

[

2
5

]

.
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Matrix exponential: Example 1, page 2

Since the Jordan form J is diagonal, the same is true for etJ and

J = B−1AB =

[

2
5

]

=⇒ etJ =

[

e2t

e5t

]

.

As for the exponential of the original matrix A, this is given by

J = B−1AB =⇒ A = BJB−1 =⇒ etA = BetJB−1.

In view of our computations above, we must thus have

etA =

[

1 1
−2 1

] [

e2t

e5t

] [

1/3 −1/3
2/3 1/3

]

=
1

3

[

e2t + 2e5t −e2t + e5t

−2e2t + 2e5t 2e2t + e5t

]

.

The exact same approach applies for any diagonalisable matrix A.
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Matrix exponential: Example 2, page 1

We compute the matrix exponential of the non-diagonalisable matrix

A =

[

9 −4
9 −3

]

.

In this case, the characteristic polynomial of A is given by

f(λ) = λ2 − (trA)λ+ detA = λ2 − 6λ+ 9 = (λ− 3)2,

so the only eigenvalue is λ = 3. The only eigenvector turns out to be

v =

[

2
3

]

.

This implies that A is not diagonalisable and that the Jordan form is

J = B−1AB =

[

3
1 3

]

=⇒ etJ =

[

e3t

te3t e3t

]

.

Let us now find a matrix B such that J = B−1AB is in Jordan form.
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Matrix exponential: Example 2, page 2

Pick any nonzero vector v1 which is not an eigenvector and let

v2 = (A− λI)v1, B =
[

v1 v2
]

.

There are obviously infinitely many choices and one possibility is

v1 =

[

1
0

]

, v2 = (A− 3I)v1 =

[

6
9

]

, B =

[

1 6
0 9

]

.

In view of our computations above, we must thus have

etA = BetJB−1 =

[

1 6
0 9

] [

e3t

te3t e3t

] [

1 −2/3
0 1/9

]

= e3t
[

1 + 6t −4t
9t 1− 6t

]

.

This approach applies for any non-diagonalisable 2× 2 matrix A.
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Matrix exponential: Example 3, page 1

Finally, we consider a real matrix A with complex eigenvalues, say

A =

[

1 −1
1 1

]

.

The characteristic polynomial of this matrix is easily found to be

f(λ) = λ2 − (trA)λ+ detA = λ2 − 2λ+ 2 = (λ− 1)2 + 1.

The eigenvalues λ = 1± i are complex conjugates of one another and
the same is true for the corresponding eigenvectors which are given by

v1 =

[

1
−i

]

, v2 =

[

1
i

]

.

This implies that A is diagonalisable and that we also have

B =

[

1 1
−i i

]

=⇒ J = B−1AB =

[

1 + i
1− i

]

.

In particular, one may proceed as before to compute etJ and then etA.
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Matrix exponential: Example 3, page 2

Since the Jordan form J is diagonal, the same is true for etJ and

J = B−1AB =

[

1 + i
1− i

]

=⇒ etJ =

[

eteit

ete−it

]

.

In view of our computations above, we must thus have

etA = BetJB−1 =

[

1 1
−i i

] [

eteit

ete−it

] [

1/2 i/2
1/2 −i/2

]

=
et

2

[

eit + e−it i(eit − e−it)
i(e−it − eit) eit + e−it

]

.

On the other hand, one has e±it = cos t± i sin t, so this implies that

etA =
et

2

[

2 cos t −2 sin t
2 sin t 2 cos t

]

=

[

et cos t −et sin t
et sin t et cos t

]

.

Needless to say, etA will always turn out to be real when A is real.
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Fundamental matrix

Definition 2.9 – Fundamental matrix

We say that Φ(t) is a fundamental matrix for a linear homogeneous
system, if the columns of Φ(t) form a basis for the space of solutions.

The most common example is the matrix exponential Φ(t) = etA. It is
a fundamental matrix for the system y′(t) = Ay(t), if A is constant.

Theorem 2.10 – Properties of fundamental matrices

Let Φ(t) be a fundamental matrix for the system y′(t) = A(t)y(t).

1 Every solution is a linear combination of the columns of Φ(t).

2 Every solution has the form y(t) = Φ(t)c for some vector c.

3 The fundamental matrix itself is a matrix solution of the system.
In other words, one has the matrix identity Φ′(t) = A(t)Φ(t).
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Fundamental matrix: Special cases

It is only in a few special cases that one may explicitly determine a
fundamental matrix for the linear system y′(t) = A(t)y(t).

When A(t) is either upper or lower triangular, the system can be
solved explicitly by solving the corresponding equations one by one.
Let yk(t) be the unique solution of the initial value problem

y′

k(t) = A(t)yk(t), yk(0) = ek.

Then y1(t),y2(t), . . . ,yn(t) form a basis for the space of solutions.

When A(t) is a matrix that commutes with its antiderivative B(t), a
fundamental matrix for the system is given by

Φ(t) = eB(t), B(t) =

∫ t

0
A(s) ds.

This is the case, in particular, when A(t) = A is a constant matrix.
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Variation of parameters: Intuition

Let us now turn our attention to the linear inhomogeneous system

y′(t) = A(t)y(t) + b(t). (LIS)

When it comes to the special case b(t) = 0, there is a fundamental
matrix Φ(t) which satisfies the identity Φ′(t) = A(t)Φ(t) and every
solution has the form y(t) = Φ(t)c for some constant vector c.

To deal with the general case, we look for solutions that have the
form y(t) = Φ(t)c(t), where c(t) is not necessarily constant. Since

y′(t) = Φ′(t)c(t) + Φ(t)c′(t)

= A(t)Φ(t)c(t) + Φ(t)c′(t)

= A(t)y(t) + Φ(t)c′(t),

we do obtain a solution of (LIS), provided that Φ(t)c′(t) = b(t).

Thus, one may use Φ(t) to solve the inhomogeneous system as well.
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Variation of parameters: Main result

Theorem 2.11 – Variation of parameters

Consider the linear inhomogeneous system

y′(t) = A(t)y(t) + b(t). (LIS)

If A(t) and b(t) are continuous, then every solution has the form

y(t) = Φ(t)c+Φ(t)

∫

Φ(t)−1b(t) dt,

where c is a constant vector and Φ(t) is a fundamental matrix for the
associated linear homogeneous system y′(t) = A(t)y(t).

The integral term in the equation above is itself a particular solution
of the system. According to the theorem, every solution is thus the
sum of the homogeneous solution Φ(t)c and a particular solution.
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Variation of parameters: Example

We use variation of parameters to solve the inhomogeneous system

y′(t) = Ay(t) + b(t), A =

[

1 0
1 1

]

, b(t) =

[

1
t

]

.

Since A is constant, a fundamental matrix is Φ(t) = etA and thus

y(t) = etAc+ etA
∫

e−tAb(t) dt

=

[

et 0
tet et

] [

c1
c2

]

+

[

et 0
tet et

]
∫

[

e−t 0
−te−t e−t

] [

1
t

]

dt

=

[

c1e
t

c1te
t + c2e

t

]

+

[

et 0
tet et

]
∫

[

e−t

0

]

dt

=

[

c1e
t

c1te
t + c2e

t

]

+

[

et 0
tet et

] [

−e−t

0

]

=

[

c1e
t − 1

c1te
t + c2e

t + tet − t

]

.
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Higher-order scalar equations

Suppose that we need to solve a scalar linear equation such as

y′′′(t)− 5y′′(t) + 7y′(t)− 3y(t) = 0.

This is a 3rd-order equation, so one may express it as a 3× 3 system.

More precisely, let y be the vector with entries y, y′, y′′ and note that

y =





y
y′

y′′



 =⇒ y′ =





y′

y′′

y′′′



 =





0 1 0
0 0 1
3 −7 5









y
y′

y′′



 = Ay.

Since the scalar equation is linear, the same is true for the system, so
one may determine y using methods we have already developed.

This kind of approach is certainly valid, but it is not very efficient, as
we are only interested in the first entry of y. It is thus worth having
some related results that deal with scalar equations directly.
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Linear homogeneous equations

Theorem 2.12 – Linear homogeneous equations

Consider the scalar linear homogeneous equation

any
(n)(t) + . . .+ a2y

′′(t) + a1y
′(t) + a0y(t) = 0. (LHE)

If the coefficients ak are all constant, then one may obtain a basis of
solutions by solving the corresponding characteristic equation

anλ
n + . . .+ a2λ

2 + a1λ+ a0 = 0

and by associating each root λ with solutions of (LHE) as follows.

1 If a real root λ has multiplicity k, it gets associated with the k
functions {tjeλt}k−1

j=0 , namely with eλt, teλt, . . . , tk−1eλt.

2 If a pair of complex roots λ = a± bi has multiplicity k, it gets
associated with the 2k functions {tjeat sin(bt), tjeat cos(bt)}k−1

j=0 .
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Linear homogeneous equations: Example 1

We use the previous theorem to solve the homogeneous equation

y′′′(t)− 5y′′(t) + 7y′(t)− 3y(t) = 0.

In this case, the associated characteristic equation is given by

λ3 − 5λ2 + 7λ− 3 = 0.

Noting that λ = 1 is a root, one easily finds that

λ3 − 5λ2 + 7λ− 3 = (λ− 1)(λ2 − 4λ+ 3) = (λ− 1)2(λ− 3).

This means that λ = 1 is a double root, while λ = 3 is a simple root.
Thus, a basis of solutions is formed by the functions et, tet, e3t and
every solution of the given equation has the form

y(t) = c1e
t + c2te

t + c3e
3t.
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Linear homogeneous equations: Example 2

Let us now solve an initial value problem such as

y′′(t)− y(t) = 0, y(0) = 1, y′(0) = 3.

In this case, the associated characteristic equation gives

λ2 − 1 = 0 =⇒ (λ+ 1)(λ− 1) = 0 =⇒ λ = −1, 1.

Since the roots are both simple, every solution has the form

y(t) = c1e
t + c2e

−t.

Next, we turn to the initial conditions and we note that

y(t) = c1e
t + c2e

−t =⇒ 1 = y(0) = c1 + c2,

y′(t) = c1e
t − c2e

−t =⇒ 3 = y′(0) = c1 − c2.

Solving this system of equations, we find that c1 = 2 and c2 = −1.
Thus, the unique solution is given by y(t) = 2et − e−t.
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Linear homogeneous equations: Example 3

The equation that describes a simple harmonic oscillator is

my′′(t) = −ky(t).

Here, the constants k,m are both positive, so one may also write

y′′(t) + ω2y(t) = 0, ω =
√

k/m.

Solving the associated characteristic equation, we now get

λ2 + ω2 = 0 =⇒ λ2 = −ω2 =⇒ λ = ±iω.

This is a pair of complex roots, so every solution has the form

y(t) = c1 sin(ωt) + c2 cos(ωt).

In particular, every solution of the given equation is periodic.
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Linear homogeneous equations: Example 4

As our last example on homogeneous equations, we now solve

y′′′(t) + 7y′′(t) + 19y′(t) + 13y(t) = 0.

In this case, the associated characteristic equation is given by

λ3 + 7λ2 + 19λ+ 13 = 0.

Noting that λ = −1 is a root, one may factor the cubic as

λ3 + 7λ2 + 19λ+ 13 = (λ+ 1)(λ2 + 6λ+ 13).

The roots of the quadratic factor are easily found to be

λ =
−6±

√
62 − 4 · 13
2

=
−6± 4i

2
= −3± 2i.

We may thus conclude that every solution has the form

y(t) = c1e
−t + c2e

−3t sin(2t) + c3e
−3t cos(2t).
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Linear inhomogeneous equations

Suppose that we need to solve an inhomogeneous equation such as

y′′(t)− 3y′(t) + 2y(t) = 2t+ 5.

The solution of such an equation can be expressed as the sum of the
homogeneous solution yh and a particular solution yp. More precisely,
the difference z = y − yp between any two solutions satisfies

z′′(t)− 3z′(t) + 2z(t) = 0,

so it is a solution of the corresponding homogeneous equation.

This proves the useful identity y = yh + yp. We already know how to
find the homogeneous solution yh, so we need only worry about yp.

There are two methods for finding a particular solution: the method
of undetermined coefficients and variation of parameters. The former
is generally simpler, but it only applies in a few special cases.
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Undetermined coefficients: Main result

Theorem 2.13 – Undetermined coefficients

Consider the scalar linear inhomogeneous equation

any
(n)(t) + . . .+ a2y

′′(t) + a1y
′(t) + a0y(t) = f(t). (LIE)

Suppose that the coefficients ak are all constant and that the right
hand side f(t) is a linear combination of terms that have the form

tjeλt, tjeat sin(bt), tjeat cos(bt).

Then the solution y(t) satisfies a higher-order homogeneous equation,
so it can itself be expressed as a linear combination of such terms.

One typically uses this theorem to write down an explicit formula for
a particular solution yp. It is easy to predict the terms that appear in
the formula, but their exact coefficients need to be determined.
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Undetermined coefficients: General rules

The general rules for finding a particular solution yp are the following.

1 If f(t) contains the term tkeλt, then yp contains the expression

k
∑

j=0

Ajt
jeλt = Akt

keλt + . . .+A1te
λt +A0e

λt.

2 If f(t) contains either the term tkeat sin(bt) or the term tkeat cos(bt),
but not necessarily both, then yp contains the expression

k
∑

j=0

Ajt
jeat sin(bt) +

k
∑

j=0

Bjt
jeat cos(bt).

3 If either of the expressions above repeats part of the homogeneous
solution, then it needs to be multiplied by t repeatedly until it no
longer contains terms which appear in the homogeneous solution.

34 / 50



Undetermined coefficients: Some comments

Let us explain the overall approach by looking at the special case

y′′(t)− y(t) = f(t).

Our initial guess for a particular solution yp is dictated by the right
hand side f(t). Some typical choices appear in the table below.

f(t) yp
t2e2t At2e2t +Bte2t + Ce2t

te2t − e3t Ate2t +Be2t + Ce3t

t3 + 1 At3 +Bt2 + Ct+D

t+ cos t At+B + C sin t+D cos t

These choices are dictated by rules 1 and 2 . According to the last
rule, we also need to adjust our initial choice whenever it repeats part
of the homogeneous solution. In this case, we have yh = c1e

t + c2e
−t,

so there is no overlap with yp and thus no need for adjustments.
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Undetermined coefficients: Example 1

We use undetermined coefficients in order to solve the equation

y′′(t)− 3y′(t) + 2y(t) = 2t+ 5.

We have y = yh + yp and the homogeneous solution is given by

λ2 − 3λ+ 2 = 0 =⇒ (λ− 1)(λ− 2) = 0

=⇒ yh = c1e
t + c2e

2t.

To find a particular solution yp, we let yp = At+B. This gives

y′′p − 3y′p + 2yp = −3A+ 2At+ 2B,

so we need to have 2A = 2 and 2B − 3A = 5. It easily follows that

A = 1 =⇒ B = 4 =⇒ y = c1e
t + c2e

2t + t+ 4.
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Undetermined coefficients: Example 2

We use undetermined coefficients in order to solve the equation

y′′(t) + 5y′(t) + 6y(t) = 8e2t.

Once again, y = yh + yp and the homogeneous solution is given by

λ2 + 5λ+ 6 = 0 =⇒ (λ+ 2)(λ+ 3) = 0

=⇒ yh = c1e
−2t + c2e

−3t.

To find a particular solution yp, we let yp = Ae2t. This gives

y′′p + 5y′p + 6yp = 4Ae2t + 5(2Ae2t) + 6Ae2t = 20Ae2t,

so we need to have 20A = 8. In other words, A = 2/5 and thus

y = yh + yp = c1e
−2t + c2e

−3t +
2

5
e2t.
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Undetermined coefficients: Example 3

We use undetermined coefficients in order to solve the equation

y′′(t) + 5y′(t) + 6y(t) = sin t.

As in the previous example, the homogeneous solution is given by

yh = c1e
−2t + c2e

−3t.

To find a particular solution, we let yp = A sin t+B cos t and we note
that y′p = A cos t−B sin t, while y′′p = −A sin t−B cos t. This gives

y′′p + 5y′p + 6yp = 5(A−B) sin t+ 5(A+B) cos t,

so we need to have A−B = 1/5 and A+B = 0.

Solving these two equations, we get A = 1/10 and B = −1/10, so

y = yh + yp = c1e
−2t + c2e

−3t +
1

10
sin t− 1

10
cos t.
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Undetermined coefficients: Example 4, page 1

We use undetermined coefficients in order to solve the equation

y′′(t) + y(t) = 2 sin t+ 4et.

The homogeneous solution yh can be found by noting that

λ2 + 1 = 0 =⇒ λ = ±i =⇒ yh = c1 sin t+ c2 cos t.

Let us now worry about the particular solution yp. Based on the right
hand side of the given equation, a natural guess for yp would be

yp = A sin t+B cos t+ Cet.

However, this function repeats terms that are already present in yh,
so we need to adjust these terms and seek a solution of the form

yp = At sin t+Bt cos t+ Cet.
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Undetermined coefficients: Example 4, page 2

Differentiating the last equation twice, one finds that

yp = At sin t+Bt cos t+ Cet,

y′p = A sin t+At cos t+B cos t−Bt sin t+ Cet,

y′′p = 2A cos t−At sin t− 2B sin t−Bt cos t+ Cet.

We need to ensure that y′′p + yp = 2 sin t+ 4et and we also have

y′′p + yp = 2A cos t− 2B sin t+ 2Cet

by above. Comparing these two equations, we arrive at the system

2A = 0, −2B = 2, 2C = 4.

This determines the coefficients A, B and C, so the solution is

y = yh + yp = c1 sin t+ c2 cos t− t cos t+ 2et.
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Undetermined coefficients: Example 5, page 1

We use undetermined coefficients in order to solve the equation

y′′(t)− 2y′(t) + y(t) = 2et + 3t+ 4.

The homogeneous solution yh can be found by noting that

λ2 − 2λ+ 1 = 0 =⇒ (λ− 1)2 = 0

=⇒ yh = c1e
t + c2te

t.

Next, we turn to the particular solution yp. Our initial guess

yp = Aet +Bt+ C

repeats part of the homogeneous solution, so this part needs to be
adjusted. Since tet is also repeating part of yh, one needs to take

yp = At2et +Bt+ C.
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Undetermined coefficients: Example 5, page 2

Differentiating the last equation twice, one easily finds that

yp = At2et +Bt+ C,

y′p = 2Atet +At2et +B,

y′′p = 2Aet + 4Atet +At2et,

y′′p − 2y′p + yp = 2Aet +Bt+ C − 2B.

On the other hand, we need to ensure that the solution yp satisfies

y′′p − 2y′p + yp = 2et + 3t+ 4.

Comparing these two expressions, we arrive at the system

2A = 2, B = 3, C − 2B = 4.

This determines the coefficients A, B and C, so the solution is

y = yh + yp = c1e
t + c2te

t + t2et + 3t+ 10.
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Linear independence and Wronskian

Definition 2.14 – Wronskian

The Wronskian of the functions y1(t), y2(t), . . . , yn(t) is defined as

W (t) = det











y1(t) y2(t) . . . yn(t)
y′1(t) y′2(t) . . . y′n(t)
...

...
. . .

...

y
(n−1)
1 (t) y

(n−1)
2 (t) . . . y

(n−1)
n (t)











.

Theorem 2.15 – Linear independence and Wronskian

Suppose that the Wronskian of some scalar functions is not identically
zero. Then these scalar functions are linearly independent.

The converse of this theorem is not true in general. For instance, the
Wronskian of the functions y1(t) = t2 and y2(t) = t|t| is identically
zero, but these functions are linearly independent.
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Variation of parameters: General case

Theorem 2.16 – Variation of parameters (General case)

Consider the general scalar linear inhomogeneous equation

an(t)y
(n)(t) + . . .+ a1(t)y

′(t) + a0(t)y(t) = f(t). (LIE)

Suppose that y1(t), y2(t), . . . , yn(t) are linearly independent solutions
of the associated homogeneous equation. A particular solution of (LIE)
is then yp(t) = c1(t)y1(t) + c2(t)y2(t) + . . . + cn(t)yn(t), where the
coefficients ck(t) are determined using the equation











c′1(t)
c′2(t)
...

c′n(t)











=











y1(t) y2(t) . . . yn(t)
y′1(t) y′2(t) . . . y′n(t)
...

...
. . .

...

y
(n−1)
1 (t) y

(n−1)
2 (t) . . . y

(n−1)
n (t)











−1 









0
...
0

f(t)/an(t)











.
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Variation of parameters: Second-order case

Theorem 2.17 – Variation of parameters (Second-order case)

Suppose that y1(t), y2(t) are linearly independent solutions of

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = 0 (LHE)

and consider the corresponding inhomogeneous equation

a(t)y′′(t) + b(t)y′(t) + c(t)y(t) = f(t). (LIE)

A particular solution of (LIE) is then provided by the formula

yp(t) = −y1(t)

∫

y2(t)f(t)

a(t)W (t)
dt+ y2(t)

∫

y1(t)f(t)

a(t)W (t)
dt,

where W (t) = y1(t)y
′
2(t)− y′1(t)y2(t) is the Wronskian of y1 and y2.
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Variation of parameters: Example

We use variation of parameters to find a particular solution of

y′′(t) + y(t) = sec t.

The solution of the associated homogeneous equation is given by

λ2 + 1 = 0 =⇒ λ = ±i =⇒ yh = c1 sin t+ c2 cos t.

Letting y1(t) = sin t and y2(t) = cos t, we now find that

W (t) = det

[

sin t cos t
cos t − sin t

]

= − sin2 t− cos2 t = −1.

According to the previous theorem, a particular solution is thus

yp(t) = sin t

∫

cos t · sec t dt− cos t

∫

sin t · sec t dt

= sin t

∫

cos t

cos t
dt− cos t

∫

sin t

cos t
dt

= t sin t+ (cos t) log(cos t).
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Reduction of order

Suppose that we know one solution y1 of the homogeneous equation

an(t)y
(n)(t) + . . .+ a1(t)y

′(t) + a0(t)y(t) = 0 (LHE)

and that we need to solve the associated inhomogeneous equation

an(t)z
(n)(t) + . . .+ a1(t)z

′(t) + a0(t)z(t) = f(t). (LIE)

Then the substitution z = y1v gives rise to an equation for v which
involves the derivatives of v but not v itself. Such an equation is a
lower-order equation for v′, so it is generally easier to solve.

This approach can be used for any linear inhomogeneous equation. In
particular, we are not assuming that the coefficients ak are constant.

When it comes to second-order equations, one may use this approach
to find all solutions of (LIE), if just one solution of (LHE) is known.
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Reduction of order: Example, page 1

It is easy to check that y1(t) = t2 satisfies the homogeneous equation

t2y′′(t)− 2ty′(t) + 2y(t) = 0.

We now use this fact to solve the inhomogeneous equation

t2z′′(t)− 2tz′(t) + 2z(t) = t
√
t, t > 0.

First of all, we change variables by letting z = y1v. This gives

z = t2v, z′ = 2tv + t2v′, z′′ = 2v + 4tv′ + t2v′′

and the inhomogeneous equation that needs to be solved becomes

t
√
t = t2z′′ − 2tz′ + 2z

=✟
✟✟2t2v + 4t3v′ + t4v′′ −✟

✟✟4t2v − 2t3v′ +✟
✟✟2t2v

= t4v′′ + 2t3v′.
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Reduction of order: Example, page 2

Setting w = v′ for convenience, we now arrive at the equation

t4w′ + 2t3w = t
√
t =⇒ w′ + 2t−1w = t−5/2.

This is a first-order linear equation with integrating factor

µ = exp

(
∫

2t−1 dt

)

= e2 log t+C = Kt2.

Letting K = 1 for simplicity, we may finally conclude that

(µw)′ = t−1/2 =⇒ µw = 2t1/2 + c1

=⇒ w = 2t−3/2 + c1t
−2.

Since v′ = w and z = t2v by above, this also implies that

v = −4t−1/2 − c1t
−1 + c2 =⇒ z = −4t

√
t− c1t+ c2t

2.
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Summary of available methods

Homogeneous systems: y′(t) = A(t)y(t).

−→ Eigenvector method: if A(t) is constant and diagonalisable.

−→ Matrix exponential: if A(t) is constant.

−→ Solvable equations: if A(t) is lower/upper triangular.

Inhomogeneous systems: y′(t) = A(t)y(t) + b(t).

−→ Variation of parameters: this method applies in all cases.

Homogeneous scalar equations:
∑n

k=0 ak(t)y
(k)(t) = 0.

−→ Characteristic equation: if the coefficients ak are constant.

−→ Reduction of order: if one solution is already known.

Inhomogeneous scalar equations:
∑n

k=0 ak(t)y
(k)(t) = f(t).

−→ Undetermined coefficients: if ak are constant and f is simple.

−→ Variation of parameters: this method applies in all cases.

−→ Reduction of order: if one homogeneous solution is known.
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