
MA2223 – Tutorial solutions

Part 3. Normed vector spaces

T9–1. Let X be a normed vector space and let x,y ∈ X . Show that

∣

∣||x|| − ||y||
∣

∣ ≤ ||x− y||.

This result is a direct consequence of the triangle inequality because

||x|| ≤ ||x− y||+ ||y|| =⇒ ||x|| − ||y|| ≤ ||x− y||,
||y|| ≤ ||y − x||+ ||x|| =⇒ ||y|| − ||x|| ≤ ||x− y||.

T9–2. Suppose xn is a Cauchy sequence in a normed vector space X . Show that the
norms ||xn|| form a convergent sequence in R.

Let ε > 0 be given. Since the sequence xn is Cauchy, there exists N > 0 such that

||xm − xn|| < ε for all m,n ≥ N .

Consider the sequence of real numbers tn = ||xn||. Using the previous problem, we get

|tm − tn| =
∣

∣||xm|| − ||xn||
∣

∣ ≤ ||xm − xn|| < ε

for all m,n ≥ N . In particular, tn is a Cauchy sequence in R and thus convergent.

T9–3. Consider the identity function I : (X, || · ||∞) → (X, || · ||1) in the case that
X = C[a, b]. Show that I is Lipschitz continuous.

Let f, g ∈ C[a, b] be arbitrary. Using the definitions of the norms ||f ||p, one finds that

||I(f(x))− I(g(x))||1 = ||f(x)− g(x)||1 =
∫ b

a

|f(x)− g(x)| dx

≤
∫ b

a

||f(x)− g(x)||∞ dx

= (b− a) · ||f(x)− g(x)||∞.



T9–4. Consider the space X = C[0, 1] and the sequence fn(x) =
√
n · xn. Show that

fn → 0 in (X, || · ||1). Is the same true in (X, || · ||2)?

When it comes to the first norm, it is easy to check that

||fn||1 =
∫ 1

0

|fn(x)| dx =
√
n

∫ 1

0

xn dx =

√
n

n + 1

and this expression obviously approaches zero as n → ∞. On the other hand,

||fn||22 =
∫ 1

0

fn(x)
2 dx = n

∫ 1

0

x2n dx =
n

2n+ 1

and this expression approaches 1
2
as n → ∞, so we also have ||fn||2 → 1√

2
as n → ∞.

T9–5. Consider the unit sphere S = {x ∈ X : ||x|| = 1}. Show that S is closed in
every normed vector space X .

Let f : X → R denote the norm function f(x) = ||x|| which is known to be continuous.
Since the set A = {1} is closed in R, its inverse image is closed in X . On the other hand,

f−1(A) = {x ∈ X : f(x) = 1} = {x ∈ X : ||x|| = 1} = S.

T9–6. Is the discrete metric on R induced by a norm?

No. If a metric is induced by a norm, then that metric must satisfy

d(2x, 2y) = ||2x− 2y|| = 2||x− y|| = 2d(x,y) for all x,y.

This is not the case for the discrete metric because d(2x, 2y) = d(x,y) = 1 for all x 6= y.

T10–1. Show that ||S ◦ T || ≤ ||S|| · ||T || whenever S, T ∈ L(X,X).

First, we show that ||T (x)|| ≤ ||T || · ||x|| for each T ∈ L(X,X). When x 6= 0, we have

||T || = sup
x6=0

||T (x)||
||x|| =⇒ ||T (x)||

||x|| ≤ ||T || =⇒ ||T (x)|| ≤ ||T || · ||x||

and the inequality holds. When x = 0, we have T (x) = 0, so the inequality holds in that
case as well. Using the inequality twice, one now finds that

||S(T (x))|| ≤ ||S|| · ||T (x)|| ≤ ||S|| · ||T || · ||x||

for all x ∈ X . In view of the definition of the operator norm, this also implies that

||S ◦ T || = sup
x6=0

||S(T (x))||
||x|| ≤ ||S|| · ||T ||.



T10–2. Consider the linear operator T : (R2, || · ||∞) → (R2, || · ||∞) which is defined by
T (x1, x2) = (2x1 + 3x2, 4x2). Find its operator norm.

First of all, we establish an upper bound for the operator norm. The expression

||T (x)||∞ = max(|2x1 + 3x2|, |4x2|)

is equal to either |2x1 + 3x2| or else |4x2|. In the former case, one finds that

||T (x)||∞ = |2x1 + 3x2| ≤ 2|x1|+ 3|x2| ≤ 5max |xi| = 5||x||∞.

In the latter case, a similar argument leads to

||T (x)||∞ = 4|x2| ≤ 4max |xi| = 4||x||∞.

This means that ||T (x)||∞ ≤ 5||x||∞ in any case, so the operator norm satisfies

||T || = sup
x6=0

||T (x)||∞
||x||∞

≤ 5.

Next, we show that equality holds for some particular vector x. For instance, take

x = (1, 1), T (x) = (5, 4), ||x||∞ = 1, ||T (x)||∞ = 5.

This gives ||T (x)||∞
||x||∞ = 5 for some vector x, so ||T || ≥ 5 and thus ||T || = 5 by above.

T10–3. Consider the linear operator T : (R2, || · ||1) → (R2, || · ||∞) which is defined by
T (x1, x2) = (2x1 + 3x2, 4x2). Find its operator norm.

First of all, we establish an upper bound for the operator norm. The expression

||T (x)||∞ = max(|2x1 + 3x2|, |4x2|)

is equal to either |2x1 + 3x2| or else |4x2|. In the former case, one finds that

||T (x)||∞ = |2x1 + 3x2| ≤ 2|x1|+ 3|x2| ≤ 3|x1|+ 3|x2| = 3||x||1.

In the latter case, a similar argument leads to

||T (x)||∞ = 4|x2| ≤ 4|x1|+ 4|x2| = 4||x||1.
This means that ||T (x)||∞ ≤ 4||x||1 in any case, so the operator norm satisfies

||T || = sup
x6=0

||T (x)||∞
||x||1

≤ 4.

Next, we show that equality holds for some particular vector x. For instance, take

x = (0, 1), T (x) = (3, 4), ||x||1 = 1, ||T (x)||∞ = 4.

This gives ||T (x)||∞
||x||1 = 4 for some vector x, so ||T || ≥ 4 and thus ||T || = 4 by above.



T10–4. Let a ∈ ℓ∞ and consider the linear operator T : ℓ2 → ℓ2 which is defined by
T (x1, x2, . . .) = (a1x1, a2x2, . . .). Find its operator norm.

Using the definition of the norms ||x||p, one finds that

||T (x)||22 =
∞
∑

i=1

a2ix
2
i ≤

∞
∑

i=1

||a||2∞x2
i = ||a||2∞||x||22.

This proves the inequality ||T (x)|| ≤ ||a||∞||x||2 which also implies that

||T || = sup
x6=0

||T (x)||2
||x||2

≤ ||a||∞.

Next, we show that equality holds. Consider the vector x = ek that has 1 as its kth entry
and all other entries equal to zero. For that particular vector, we have

T (x) = akx =⇒ ||T (x)||2 = |ak| · ||x||2 =⇒ ||T || ≥ |ak|.

This holds for any index k, so ||T || ≥ supk |ak| = ||a||∞ and thus ||T || = ||a||∞ by above.

T10–5. Show that the norms ||f ||1 and ||f ||∞ are not equivalent in C[0, 1].

If the given norms are equivalent, then there exist constants a, b > 0 such that

a||f ||1 ≤ ||f ||∞ ≤ b||f ||1 for all f ∈ C[0, 1].

Let us then consider the case f(x) = xn for any integer n ≥ 1. In this case, we have

||fn||1 =
∫ 1

0

xn dx =
1

n + 1
, ||fn||∞ = sup

0≤x≤1
xn = 1.

Were the two norms equivalent, we would be able to conclude that

a

n+ 1
≤ 1 ≤ b

n + 1

for any integer n ≥ 1. This is not true because both fractions approach zero as n → ∞.

T10–6. Show that the norms ||f ||1 and ||f ||2 are not equivalent in C[0, 1].

If the given norms are equivalent, then there exist constants a, b > 0 such that

a||f ||1 ≤ ||f ||2 ≤ b||f ||1 for all f ∈ C[0, 1].



Let us then consider the case f(x) = xn for any integer n ≥ 1. In this case, we have

||fn||1 =
∫ 1

0

xn dx =
1

n+ 1
, ||fn||2 =

√

∫ 1

0

x2n dx =
1√

2n+ 1
.

Were the two norms equivalent, we would be able to conclude that

a

n + 1
≤ 1√

2n+ 1
≤ b

n+ 1
=⇒ a ≤ n + 1√

2n + 1
≤ b

for any integer n ≥ 1. This is not true because n+1√
2n+1

can be arbitrarily large.


