
MA2223 – Tutorial solutions

Part 2. Topological spaces

T5–1. Let T be the collection of subsets of R that consists of ∅,R and every interval
of the form (−∞, a). Show that T is a topology on R.

We check the properties that a topology needs to satisfy. First of all, the sets ∅,R are
open by assumption. To show that unions of open sets are open, we note that

⋃

i

(−∞, ai) = (−∞, sup
i

ai).

Given any number of intervals that have the form (−∞, ai), their union is then an interval
of the same form, so it is open as well. The same is true for finite intersections because

n⋂

i=1

(−∞, ai) = (−∞, min
1≤i≤n

ai).

T5–2. Find the closure of (0, 1) ⊂ R with respect to the discrete topology, the indiscrete
topology and the topology of the previous problem.

By definition, the closure of A is the smallest closed set that contains A. If we use the
discrete topology, then every set is open, so every set is closed. This implies that A = A.
If we use the indiscrete topology, then only ∅,R are open, so only ∅,R are closed and this
implies that A = R. As for the topology of the previous problem, the nontrivial closed sets
have the form [a,∞) and the smallest one that contains A = (0, 1) is the set A = [0,∞).

T5–3. Consider R
2 with its usual topology. Find the closure, the interior and the

boundary of the upper half plane A = {(x, y) ∈ R
2 : y > 0}.

The upper half plane A is open, so it is equal to its own interior, namely A◦ = A. The
closure must contain the points which are limits of sequences in A, so the closure is

A = {(x, y) ∈ R
2 : y ≥ 0}.

Finally, the boundary of A is defined as ∂A = A ∩X − A. In this case, we have

X − A = {(x, y) ∈ R
2 : y ≤ 0} =⇒ X − A = {(x, y) ∈ R

2 : y ≤ 0}
=⇒ ∂A = {(x, y) ∈ R

2 : y = 0}.



T5–4. Let (X,T ) be a topological space and A ⊂ X. Show that A is open if and only
if each x ∈ A has a neighbourhood U such that U ⊂ A.

If the set A is open, then A = A◦ by Theorem 2.4 and one may use Theorem 2.5 to
conclude that each x ∈ A has a neighbourhood Ux that lies entirely within A. Conversely,
suppose that each x ∈ A has a neighbourhood Ux that lies entirely within A. Then

{x} ⊂ Ux ⊂ A

and we may take the union over all elements of A to conclude that

A =
⋃

x∈A

{x} ⊂
⋃

x∈A

Ux ⊂ A.

This shows that A is the union of open sets, so A itself is open as well.

T5–5. Let (X,T ) be a topological space and suppose A ⊂ X is open. Show that the
boundary of A is contained in the complement of A.

Since A is open, its complement X − A is closed, so X − A = X − A and

∂A = A ∩X − A ⊂ X − A = X − A.

T5–6. Find two open intervals A,B ⊂ R such that A ∩ B 6= A ∩B.

Let x < y < z and consider the intervals A = (x, y) and B = (y, z). In this case,

A ∩B = ∅, A ∩ B = ∅, A ∩ B = [x, y] ∩ [y, z] = {y}.

T6–1. Consider R with its usual topology and Z ⊂ R with the subspace topology. Show
that every subset of Z is open in Z.

If the set A ⊂ Z contains a single integer x, then this set can be written as

A = {x} = (x− 1, x+ 1) ∩ Z.

Since the interval (x− 1, x + 1) is open in R, the set A is thus open in Z. If the set A ⊂ Z

is arbitrary, then one may express it as the union of its elements, namely

A =
⋃

x∈A

{x}.

The sets on the right hand side are all open by above, so their union A is open as well.



T6–2. For which topology on X is every function f : X → Y continuous? For which
topology on Y is every function f : X → Y continuous?

To say that f is continuous is to say that f−1(U) is open in X for each set U which is
open in Y . Suppose that X has the discrete topology. Then every subset of X is open in X,
so the inverse image is always open and f is continuous. Similarly, suppose that Y has the
indiscrete topology. Then the only subsets of Y which are open are ∅, Y and their inverse
images are ∅, X which are both open in X. Thus, f is continuous in that case as well.

T6–3. Show that the set A = {(x, y) ∈ R
2 : x > 0} is open in R

2.

Consider the projection on the first variable p1 : R
2 → R defined by p1(x, y) = x. This

function is continuous by Theorem 2.12 and (0,∞) is open in R, so its inverse image

p−1

1 (0,∞) = {(x, y) ∈ R
2 : p1(x, y) > 0}

is open in R
2. It remains to note that this inverse image is equal to A, namely

p−1

1 (0,∞) = {(x, y) ∈ R
2 : x > 0} = A.

T6–4. Suppose A ⊂ X and B ⊂ Y . Show that the interior of A × B in the product
space X × Y is given by (A×B)◦ = A◦ ×B◦.

If a point (x, y) lies in the interior of A×B, then there is an open set W in X × Y with

(x, y) ∈ W ⊂ A×B.

In view of the definition of the product topology, this actually means that

(x, y) ∈
⋃

i

(Ui × Vi) ⊂ A× B

for some sets Ui which are open in X and some sets Vi which are open in Y . Thus,

x ∈
⋃

i

Ui ⊂ A =⇒ x ∈ A◦

and also y ∈ B◦ for similar reasons. Conversely, suppose that x ∈ A◦ and y ∈ B◦. Then
there exists an open set U in X and an open set V in Y such that

x ∈ U ⊂ A, y ∈ V ⊂ B.

This gives (x, y) ∈ U × V ⊂ A×B, so the point (x, y) lies in the interior of A×B.



T6–5. Suppose X is Hausdorff and let x ∈ X be arbitrary. What is the intersection of
all the open sets that contain x?

The intersection must obviously contain x, but it does not contain any other point. In
fact, each point y 6= x gives rise to open sets U, V such that

x ∈ U, y ∈ V, U ∩ V = ∅.

This means that x has a neighbourhood U which does not contain the point y.

T6–6. Suppose f : X → Y is both continuous and injective. Suppose also that Y is
Hausdorff. Show that X must be Hausdorff as well.

If x, y are distinct points in X, then f(x), f(y) are distinct points in Y by injectivity.
Since Y is Hausdorff, there exist sets U, V which are open in Y such that

f(x) ∈ U, f(y) ∈ V, U ∩ V = ∅.

Consider their inverse images f−1(U) and f−1(V ). These are open in X with

x ∈ f−1(U), y ∈ f−1(V ).

To show that they are also disjoint, we note that

x ∈ f−1(U) ∩ f−1(V ) =⇒ f(x) ∈ U ∩ V = ∅.

This proves that x, y have disjoint neighbourhoods in X, so X is Hausdorff as well.

T7–1. Show that the set A = {(x, y) ∈ R
2 : x2 + y2 = 1} is connected.

In terms of polar coordinates, the points on the unit circle are the points that have the
form (cos θ, sin θ). Let us then consider the function

f : [0, 2π) → R
2, f(θ) = (cos θ, sin θ).

Each coordinate of f is continuous, so f itself is continuous. Since the interval [0, 2π) is
connected, the image of f is connected as well, so the unit circle A is connected.

T7–2. Show that there is no continuous bijection f : [0, 1) → R.

Suppose that f is such a bijection and consider its restriction

g : (0, 1) → R, g(x) = f(x).

This is continuous by Theorem 2.11 and the interval (0, 1) is connected, so the image of g
must be connected. On the other hand, the image of g is given by

R− {f(0)} = (−∞, f(0)) ∪ (f(0),∞).

This is a subset of R which is not an interval, so the image of g is not connected.



T7–3. Suppose A1, A2, . . . , An, B are connected and Ai ∩ B is nonempty for each i.
Show that the union A1 ∪ A2 ∪ · · · ∪ An ∪ B is connected.

Since Ai and B have a point in common, Ci = Ai ∪B is connected for each i. Note that
the sets Ci have a point in common because they all contain B. Thus, the union of these
sets is connected as well. It remains to note that the union of the sets Ci is

C1 ∪ C2 ∪ · · · ∪ Cn = A1 ∪ A2 ∪ · · · ∪ An ∪B.

T7–4. Suppose that f : X → Y is continuous and A ⊂ Y is connected. Does the inverse
image f−1(A) have to be connected?

No. Consider the constant function f : X → {0} when X = (0, 1) ∪ (2, 3). In this case,
the set A = {0} is certainly connected, but its inverse image is X which is not connected.

T7–5. Show that there is no continuous bijection f : (0, 1) → A when

A = {(x, y) ∈ R
2 : xy = 0}.

To say that xy = 0 is to say that one of x, y is zero. This means that A is the union of
the two axes in the xy-plane, so one can write A = Ax ∪ Ay with

Ax = R× {0}, Ay = {0} × R.

The axes Ax, Ay are connected and they have the origin in common, so their union A is
connected. If we remove the origin from A, however, the resulting set is not connected. In
fact, the resulting set is the union of the four connected components

(−∞, 0)× {0}, (0,∞)× {0}, {0} × (−∞, 0), {0} × (0,∞).

These are all connected because they are products of connected sets.
Suppose now that f : (0, 1) → A is a bijection and consider the unique point x0 ∈ (0, 1)

which maps to the origin in A. According to Theorem 2.11, the restriction

g : (0, x0) ∪ (x0, 1) → A

is continuous. Now, the image of this function is the union of four connected components.
Since the interval (0, x0) is connected, its image is connected as well, so it must lie entirely
within a single component. The same is true for the image of (x0, 1), so the image of the
original function f is a proper subset of A. This contradicts the fact that f is bijective.



T7–6. Suppose A,B are open subsets of X such that A∩B,A∪B are both connected.
Show that A,B must be connected as well.

Since the roles of A and B are interchangeable, it suffices to show that A is connected.
Suppose that A = U ∪ V is a partition of A. The set A ∩ B is a connected subset of this
partition, so it must lie entirely within either U or V . Assume A ∩ B ⊂ U without loss of
generality and consider the sets U ∪ B and V . These are nonempty and open with

(U ∪ B) ∪ V = (U ∪ V ) ∪B = A ∪ B,

(U ∪ B) ∩ V = (U ∩ V ) ∪ (B ∩ V ) = ∅ ∪∅ = ∅.

This is actually a contradiction because the set A ∪ B is connected by assumption.

T8–1. Show that A = {(x, y) ∈ R
2 : x2 + sin y ≤ 1} is not compact.

To say that A ⊂ R
2 is compact is to say that A is closed and bounded. In this case, A

is not bounded because sin y ≤ 1 for all y ∈ R and thus (0, y) ∈ A for all y ∈ R.

T8–2. Show that B = {(x, y) ∈ R
2 : x4 − 2x2 + y2 ≤ 3} is compact.

To say that B ⊂ R
2 is compact is to say that B is closed and bounded. To prove the

first part, consider the function defined by f(x, y) = x4 − 2x2 + y2 and note that

B = {(x, y) ∈ R
2 : f(x, y) ≤ 3} = f−1(I), I = (−∞, 3].

Since I is closed in R and f : R2 → R is continuous, the inverse image B = f−1(I) must be
closed in R

2. To prove that B is also bounded, we complete the square to get

(x2 − 1)2 + y2 = x4 − 2x2 + y2 + 1 ≤ 4.

This obviously implies that y2 ≤ 4, hence |y| ≤ 2, but it also implies that

|x2 − 1| ≤ 2 =⇒ |x2| ≤ |x2 − 1|+ 1 ≤ 3 =⇒ |x| ≤
√
3.

T8–3. Show that the union of two compact spaces is compact.

Suppose that A,B are compact subsets of a topological space X. To show that their
union A ∪B is compact, consider some open sets Ui that cover A ∪B. These form an open
cover of A ⊂ A∪B, so a finite number of them covers A by compactness. Similarly, a finite
number of the sets Ui covers B, so it only takes a finite number of them to cover A ∪ B.



T8–4. Find a topological space (X,T ) and a compact subset A ⊂ X such that A is not
closed in X. Can such a space X be Hausdorff?

If the space X is Hausdorff and A ⊂ X is compact, then A is closed by Theorem 2.19.
This means that we need a space X which is not Hausdorff, hence a space X which is not a
metric space. The simplest such example is a space X = {1, 2} that has two elements with
the indiscrete topology T = {∅, X}. This is not Hausdorff because the points 1, 2 have no
disjoint neighbourhoods. Consider the subset A = {1}. It is obviously compact, but it is
not closed because its complement {2} is not open.

T8–5. Suppose {xn} is a sequence in a topological space that converges to the point x.
Show that the set A = {x, x1, x2, x3, . . .} is compact.

Suppose the sets Ui form an open cover of A and let Ui0 be the set which contains the
point x. Since Ui0 is open and the sequence {xn} converges to x, there exists an integer N
such that xn ∈ Ui0 for all n ≥ N . Thus, Ui0 contains all the terms except possibly for the
terms x1, x2, . . . , xN−1. Choose an open set Uik that contains xk for each 1 ≤ k < N . Then
these N − 1 sets together with Ui0 form a finite subcover of A.

T8–6. Let Cn be a sequence of nonempty, closed subsets of a compact space X such
that Cn ⊃ Cn+1 for each n and let A be an open set that contains

⋂
Cn. Show that A

contains Ck for some k.

Since Cn is closed, its complement Un = X − Cn is open and we also have

∞⋃

n=1

Un =
∞⋃

n=1

(X − Cn) = X −
∞⋂

n=1

Cn.

Thus, the open sets Un cover the whole space X except for the intersection
⋂

Cn. Since the
intersection is covered by the set A, we conclude that A together with the sets Un form an
open cover of X. It follows by compactness that finitely many sets cover X, say

X = A ∪ U1 ∪ U2 ∪ · · · ∪ Uk.

Using De Morgan’s law once again, one may express the union of the sets Ui as

k⋃

n=1

Un =
k⋃

n=1

(X − Cn) = X −
k⋂

n=1

Cn = X − Ck.

Once we now combine the last two equations, we may finally conclude that

Ck ⊂ X = A ∪ (X − Ck) =⇒ Ck ⊂ A.


