MA2223 — Tutorial solutions
Part 1. Metric spaces

(Tl—l. Show that the function d(z,y) = \/|z — y| defines a metric on R. )

The given function is symmetric and non-negative with d(z,y) = 0 if and only if x = y.
It remains to check that the triangle inequality holds. This is the case because

d(z,y) =]z —yl < V]| — 2| + |2 —y
< Vo =2+ VI]z =yl = d(z,2) +d(z,y).

<T1—2. Show that d(z,y) = |z — y|> does not define a metric on R. )

The given function is symmetric and non-negative with d(z,y) = 0 if and only if =z = y.
However, it does not satisfy the triangle inequality because

d(1,3) =2° > 13 + 1> = d(1,2) + d(2,3).

T1-3. Compute the distances d;(f, g) and doo(f, g) when f, g € C|0, 1] are the functions
defined by f(z) =z and g(x) = 3.

One has 2® < z for all 0 < # < 1 and this implies that
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To compute the distance d.(f, g), we need to compute the maximum value of
W) =|f(x) —g(x)| =z —2°,  0<z<1.

Since h(0) = h(1) =0 and A/(x) = 1 — 322, it easily follows that

doo(f.9) = max h(z) = h(37"%) =372(1 - 37") = N



<T1—4. Compute the distance do. (2% z + 2) in the space C[0, 2]. )

We need to compute the maximum value of the function
h(z) = |2* —z — 2|, 0<x<2
Since 22 — 1 — 2 = (z — 2)(z + 1) < 0 for each 0 < z < 2, we have
h(z) =2 -2 -2/=2+2-2> = H(r)=1-2z.
This means that h(x) is increasing for x < 1/2 and decreasing for = > 1/2, so

doo(2?, 7 +2) = max h(z) = h(1/2) = 9/4.

0<x<2

T1-5. Show that d;(z'/",1) — 0 as n — oo in the space C[0,1]. Does the same
statement hold in the case of the d., metric?

Since /™ < 1 for each 0 < z < 1, the first distance is given by

1
1
dy(z'/™ 1 :/ 1— 2" de =1—

and it converges to 1 —1 =0 as n — co. On the other hand, the second distance is

1/n — o 1/n —
doo (77, 1) Orgx%(l(l /") =1

T1-6. Show that the d, metric in R? is the limit of the d, metric by showing that

limy, o0 [|2[P + |y|7] - max(|z|, |y|) for all z,y € R.

Suppose first that |y| < |z|. Then z is nonzero and |4| < 1, so

p1/p
lim [Jal? + Jyl7] " = lim Ja] - [14+ [ 2] = Jal.
This settles the case |y| < |z| and the case |z| < |y| is similar. When |z| = |y|, we have

lim [|z]?” + [y|?] YP _ i 2|z [7] YP _ i 2MP|z| = |x|.
p—r00 p—r00 p—r00



T2-1. Let (X,d) be a metric space. Given a point x € X and a real number r > 0,
show that A = {y € X : d(z,y) > r} is open in X.

Let y € A be given and note that € = d(x,y) — r is positive. We claim that B(y,¢) is
contained entirely within A. In fact, one has

z € B(y,e) = d(z,y)<e
= d(z,y)+r<edr=dxy) <dxz)+d(zy)
= r<d(zz2)
— zcA

This shows that B(y,¢) is contained entirely within A and so A is open.

<T2—2. Show that A = {(z,y) € R?* : 2? + y* < 2y} is open in R% )

Completing the square, one may express the given set in the form

A={(z,y) eR*:2” +y* — 2y < 0}
—{(z,y) eR?: 2% + (y — 1)? < 1} = B((0,1), 1).

In particular, A is open in R? because every open ball is open in R2.

<T2—3. Show that A = {z € R : 2® + 22% — 3z < 0} is closed in R. )

It suffices to show that the complement of A is open in R. Since
2% 4222 — 3z = x(2® + 27 — 3) = 2(x + 3)(z — 1),

one has 2% + 22? — 3z > 0 if and only if x € (—3,0) U (1,00). Thus, the complement of A is
the union of two open sets, so the complement of A is open and A is closed.

T2-4. Consider the set X = AU B, where A = (0,1) and B = [2,3). Show that A, B
are both open in X and thus closed in X as well.

The set A is open because it is the open ball B(1/2,1/2). Similarly, the set B is open
because it is the open ball B(5/2,1). Since the sets A and B are the complements of one
another, the fact that they are both open implies that they are both closed as well.

T2-5. Find a sequence of closed intervals C; € Cy C C3 C - -+ such that their union is
an open interval.

Consider the closed intervals C,, = [1/n,3 — 1/n], for instance. Since the left endpoint is
decreasing to 0 and the right one is increasing to 3, the union of the intervals is (0, 3).



T2-6. Let (X, d) be a metric space whose metric d is discrete. What can you say about
a sequence {x,} which is convergent in X7

Suppose the sequence converges to x. Then there exists an integer N > 0 such that
d(x,,z) <1 foralln> N.

In particular, x,, = x for all n > N, so the sequence is eventually constant.

T3-1. Suppose (X,d) is a metric space and f: X — R is continuous. Show that
A={zre X :|f(z)] <r}isopenin X for each r > 0.

The given set can be expressed in the form
A={zeX:—r<fl@)<r}=f"(-nrr).

Since (—r,7) is open in R, its inverse image must then be open in X by continuity.

T3—-2. Show that every function f: X — Y is continuous when X,Y are metric spaces
and the metric on X is discrete.

To show that f is continuous at x, let € > 0 be given and take 6 = 1. Then

dx(z,y) <0 = w=y = dyv(f(2),[({y))=dy(f(z) f(z))=0<e

T3-3. Suppose f: X — Y is a constant function between metric spaces, say f(x) = yo
for all x € X. Show that f is continuous.

To show that f is continuous at x, let € > 0 be given and § > 0 be arbitrary. Then

dx(z,y) <0 = dy(f(2), f(y)) =dy(yo,5)=0<e.

<T3—4. Show that f(x) = cos(sin(2x)) is Lipschitz continuous on [0, 1]. )

This follows immediately by Theorem 1.8 because f is differentiable and

|/ (x)] = |sin(sin(2z))] - | cos(2z)] - 2 < 2.



CT3—5. Show that f,(r) = -z converges uniformly on [0, c0). )

The given sequence converges pointwise to the zero function f(z) = 0. To show that the
convergence is uniform, one needs to show that

sup [ fu(2) = f(2)] = sup fu(2)

>0 >0
goes to zero as n — oo. Consider the function f,(z) = 775 on [0,00). Since
, 22 +n? — 22° n? — 2
fol) = =

(24 n2)2 (22 4+ n2)?’

this function is increasing when z < n and decreasing when z > n, so its maximum value is

sup [ fu(x) — f(z)| = sup fu(z) = fu(n) = 55 =

>0 >0 2n?2  2n

This expression does go to zero as n — 00, so the convergence is uniform, indeed.

CT3—6. Show that f,(z) = - does not converge uniformly on [0, 00). )

T+n

The given sequence converges pointwise to the zero function f(z) = 0. To show that the
convergence is not uniform, we consider the expression

Sup | fulz) = f(2)] = Sup falz) = D

As one can easily check, f!(z) =n/(x + n)? is positive, so f,(z) is increasing and

m
x>0 >0 T +n  aocox+n

This expression does not go to zero as n — oo, so the convergence is not uniform.

<T41. Show that the set A = {(x,y) € R? : y > 0} is not complete. )

It suffices to find a sequence of points in A such that their limit is not in A. There are
obviously lots of examples, but the simplest one is probably

(Tn,yn) = (0,1/n) € A, lim (z,,y,) = (0,0) ¢ A.

n—0o0



<T4—2. Show that (X, d) is complete, if the metric d is discrete. )

Let {x,} be a Cauchy sequence in X. Then there exists an integer N > 0 such that
d(xpm,x,) <1 forall m,n> N.
Since the metric d is discrete, this actually gives x,,, = x,, for all m,n > N. Thus,
Ty =xn forallm>N

and the given Cauchy sequence converges to the point zy € X.

T4-3. Let (X,d) be a metric space and suppose A, B C X are complete. Show that
the union A U B is complete as well.

Suppose {z,} is a Cauchy sequence of points in A U B. There must be infinitely many
terms that lie in A or else infinitely many terms that lie in B. Consider the former case, as
the other case is similar. Since a subsequence lies in A and A is complete, this subsequence
must converge to a point x € A. In view of Theorem 1.13, the original sequence must also
converge to x, so it converges to a point z € AU B.

<T4—4. Show that f(x) = In(x + 2) has a unique fixed point in [0, 2]. )

The function f is increasing, so it maps the interval [0, 2] into the interval
[£(0), £(2)] = [n2,In4] C [In1,Ine?] = [0,2].

Since [0, 2] is closed in R, it is complete by Theorem 1.16. To show that f is a contraction,
we use the mean value theorem to write

() = F)l =1 ()] - [ =yl
for some point ¢ between x and y. Since f'(x) = 1/(x + 2), this actually gives

1

|f(x)—f(y)|zc+—2‘

1
!x—ylég-lx—yl-

In particular, f is a contraction and the result follows by Banach’s fixed point theorem.



T4-5. Show that f(z) = 23 is a contraction on X = (0,1/2), but it has no fixed point
in X. Does this contradict Banach’s theorem?

The function f is increasing, so it maps the interval (0,1/2) into the interval
(0,1/8) C (0,1/2).

It does not have any fixed points because 2® = x implies that z = 0, £1 and none of these

points lies in X. To show that f is a contraction, we use the mean value theorem to write

[f (@) = fW)l =1 (0] v =y

for some point ¢ between x and y. Since f'(x) = 322, we conclude that

7(@) ~ F)l =3¢ o~y < 5 - Jo— ]

This example does not contradict Banach’s theorem because X = (0,1/2) is not complete.

T4-6. Suppose that f: X — Y is a continuous function and {z,} is a Cauchy sequence
in X. Does {f(z,)} have to be Cauchy as well?

No. For instance, f(z) = 1/z is continuous on (0, 00) and x,, = 1/n is Cauchy, but the
sequence f(x,) = n is not Cauchy because f(x,) — f(z,—1) = 1 for all n.



