
MA2223 – Tutorial solutions

Part 1. Metric spaces

T1–1. Show that the function d(x, y) =
√

|x− y| defines a metric on R.

The given function is symmetric and non-negative with d(x, y) = 0 if and only if x = y.
It remains to check that the triangle inequality holds. This is the case because

d(x, y) =
√

|x− y| ≤
√

|x− z|+ |z − y|
≤

√

|x− z|+
√

|z − y| = d(x, z) + d(z, y).

T1–2. Show that d(x, y) = |x− y|3 does not define a metric on R.

The given function is symmetric and non-negative with d(x, y) = 0 if and only if x = y.
However, it does not satisfy the triangle inequality because

d(1, 3) = 23 > 13 + 13 = d(1, 2) + d(2, 3).

T1–3. Compute the distances d1(f, g) and d∞(f, g) when f, g ∈ C[0, 1] are the functions
defined by f(x) = x and g(x) = x3.

One has x3 ≤ x for all 0 ≤ x ≤ 1 and this implies that

d1(f, g) =

∫

1

0

|x− x3| dx =

∫

1

0

(x− x3) dx =
1

2
− 1

4
=

1

4
.

To compute the distance d∞(f, g), we need to compute the maximum value of

h(x) = |f(x)− g(x)| = x− x3, 0 ≤ x ≤ 1.

Since h(0) = h(1) = 0 and h′(x) = 1− 3x2, it easily follows that

d∞(f, g) = max
0≤x≤1

h(x) = h(3−1/2) = 3−1/2(1− 3−1) =
2

3
√
3
=

2
√
3

9
.



T1–4. Compute the distance d∞(x2, x+ 2) in the space C[0, 2].

We need to compute the maximum value of the function

h(x) = |x2 − x− 2|, 0 ≤ x ≤ 2.

Since x2 − x− 2 = (x− 2)(x+ 1) ≤ 0 for each 0 ≤ x ≤ 2, we have

h(x) = |x2 − x− 2| = x+ 2− x2 =⇒ h′(x) = 1− 2x.

This means that h(x) is increasing for x < 1/2 and decreasing for x > 1/2, so

d∞(x2, x+ 2) = max
0≤x≤2

h(x) = h(1/2) = 9/4.

T1–5. Show that d1(x
1/n, 1) → 0 as n → ∞ in the space C[0, 1]. Does the same

statement hold in the case of the d∞ metric?

Since x1/n ≤ 1 for each 0 ≤ x ≤ 1, the first distance is given by

d1(x
1/n, 1) =

∫

1

0

(1− x1/n) dx = 1− 1

1/n+ 1

and it converges to 1− 1 = 0 as n → ∞. On the other hand, the second distance is

d∞(x1/n, 1) = max
0≤x≤1

(1− x1/n) = 1.

T1–6. Show that the d∞ metric in R
2 is the limit of the dp metric by showing that

limp→∞

[

|x|p + |y|p
]1/p

= max(|x|, |y|) for all x, y ∈ R.

Suppose first that |y| < |x|. Then x is nonzero and | y
x
| < 1, so

lim
p→∞

[

|x|p + |y|p
]1/p

= lim
p→∞

|x| ·
[

1 +
∣

∣

∣

y

x

∣

∣

∣

p]1/p

= |x|.

This settles the case |y| < |x| and the case |x| < |y| is similar. When |x| = |y|, we have

lim
p→∞

[

|x|p + |y|p
]1/p

= lim
p→∞

[

2|x|p
]1/p

= lim
p→∞

21/p|x| = |x|.



T2–1. Let (X, d) be a metric space. Given a point x ∈ X and a real number r > 0,
show that A = {y ∈ X : d(x, y) > r} is open in X.

Let y ∈ A be given and note that ε = d(x, y) − r is positive. We claim that B(y, ε) is
contained entirely within A. In fact, one has

z ∈ B(y, ε) =⇒ d(z, y) < ε

=⇒ d(z, y) + r < ε+ r = d(x, y) ≤ d(x, z) + d(z, y)

=⇒ r < d(x, z)

=⇒ z ∈ A.

This shows that B(y, ε) is contained entirely within A and so A is open.

T2–2. Show that A = {(x, y) ∈ R
2 : x2 + y2 < 2y} is open in R

2.

Completing the square, one may express the given set in the form

A =
{

(x, y) ∈ R
2 : x2 + y2 − 2y < 0

}

=
{

(x, y) ∈ R
2 : x2 + (y − 1)2 < 1

}

= B((0, 1), 1).

In particular, A is open in R
2 because every open ball is open in R

2.

T2–3. Show that A = {x ∈ R : x3 + 2x2 − 3x ≤ 0} is closed in R.

It suffices to show that the complement of A is open in R. Since

x3 + 2x2 − 3x = x(x2 + 2x− 3) = x(x+ 3)(x− 1),

one has x3 + 2x2 − 3x > 0 if and only if x ∈ (−3, 0) ∪ (1,∞). Thus, the complement of A is
the union of two open sets, so the complement of A is open and A is closed.

T2–4. Consider the set X = A ∪ B, where A = (0, 1) and B = [2, 3). Show that A,B
are both open in X and thus closed in X as well.

The set A is open because it is the open ball B(1/2, 1/2). Similarly, the set B is open
because it is the open ball B(5/2, 1). Since the sets A and B are the complements of one
another, the fact that they are both open implies that they are both closed as well.

T2–5. Find a sequence of closed intervals C1 ⊂ C2 ⊂ C3 ⊂ · · · such that their union is
an open interval.

Consider the closed intervals Cn = [1/n, 3− 1/n], for instance. Since the left endpoint is
decreasing to 0 and the right one is increasing to 3, the union of the intervals is (0, 3).



T2–6. Let (X, d) be a metric space whose metric d is discrete. What can you say about
a sequence {xn} which is convergent in X?

Suppose the sequence converges to x. Then there exists an integer N > 0 such that

d(xn, x) < 1 for all n ≥ N .

In particular, xn = x for all n ≥ N , so the sequence is eventually constant.

T3–1. Suppose (X, d) is a metric space and f : X → R is continuous. Show that
A = {x ∈ X : |f(x)| < r} is open in X for each r > 0.

The given set can be expressed in the form

A = {x ∈ X : −r < f(x) < r} = f−1(−r, r).

Since (−r, r) is open in R, its inverse image must then be open in X by continuity.

T3–2. Show that every function f : X → Y is continuous when X, Y are metric spaces
and the metric on X is discrete.

To show that f is continuous at x, let ε > 0 be given and take δ = 1. Then

dX(x, y) < δ =⇒ x = y =⇒ dY (f(x), f(y)) = dY (f(x), f(x)) = 0 < ε.

T3–3. Suppose f : X → Y is a constant function between metric spaces, say f(x) = y0
for all x ∈ X. Show that f is continuous.

To show that f is continuous at x, let ε > 0 be given and δ > 0 be arbitrary. Then

dX(x, y) < δ =⇒ dY (f(x), f(y)) = dY (y0, y0) = 0 < ε.

T3–4. Show that f(x) = cos(sin(2x)) is Lipschitz continuous on [0, 1].

This follows immediately by Theorem 1.8 because f is differentiable and

|f ′(x)| = | sin(sin(2x))| · | cos(2x)| · 2 ≤ 2.



T3–5. Show that fn(x) =
x

x2+n2 converges uniformly on [0,∞).

The given sequence converges pointwise to the zero function f(x) = 0. To show that the
convergence is uniform, one needs to show that

sup
x≥0

|fn(x)− f(x)| = sup
x≥0

fn(x)

goes to zero as n → ∞. Consider the function fn(x) =
x

x2+n2 on [0,∞). Since

f ′
n(x) =

x2 + n2 − 2x2

(x2 + n2)2
=

n2 − x2

(x2 + n2)2
,

this function is increasing when x < n and decreasing when x > n, so its maximum value is

sup
x≥0

|fn(x)− f(x)| = sup
x≥0

fn(x) = fn(n) =
n

2n2
=

1

2n
.

This expression does go to zero as n → ∞, so the convergence is uniform, indeed.

T3–6. Show that fn(x) =
x

x+n
does not converge uniformly on [0,∞).

The given sequence converges pointwise to the zero function f(x) = 0. To show that the
convergence is not uniform, we consider the expression

sup
x≥0

|fn(x)− f(x)| = sup
x≥0

fn(x) = sup
x≥0

x

x+ n
.

As one can easily check, f ′
n(x) = n/(x+ n)2 is positive, so fn(x) is increasing and

sup
x≥0

|fn(x)− f(x)| = sup
x≥0

x

x+ n
= lim

x→∞

x

x+ n
= 1.

This expression does not go to zero as n → ∞, so the convergence is not uniform.

T4–1. Show that the set A = {(x, y) ∈ R
2 : y > 0} is not complete.

It suffices to find a sequence of points in A such that their limit is not in A. There are
obviously lots of examples, but the simplest one is probably

(xn, yn) = (0, 1/n) ∈ A, lim
n→∞

(xn, yn) = (0, 0) /∈ A.



T4–2. Show that (X, d) is complete, if the metric d is discrete.

Let {xn} be a Cauchy sequence in X. Then there exists an integer N > 0 such that

d(xm, xn) < 1 for all m,n ≥ N .

Since the metric d is discrete, this actually gives xm = xn for all m,n ≥ N . Thus,

xm = xN for all m ≥ N

and the given Cauchy sequence converges to the point xN ∈ X.

T4–3. Let (X, d) be a metric space and suppose A,B ⊂ X are complete. Show that
the union A ∪ B is complete as well.

Suppose {xn} is a Cauchy sequence of points in A ∪ B. There must be infinitely many
terms that lie in A or else infinitely many terms that lie in B. Consider the former case, as
the other case is similar. Since a subsequence lies in A and A is complete, this subsequence
must converge to a point x ∈ A. In view of Theorem 1.13, the original sequence must also
converge to x, so it converges to a point x ∈ A ∪ B.

T4–4. Show that f(x) = ln(x+ 2) has a unique fixed point in [0, 2].

The function f is increasing, so it maps the interval [0, 2] into the interval

[f(0), f(2)] = [ln 2, ln 4] ⊂ [ln 1, ln e2] = [0, 2].

Since [0, 2] is closed in R, it is complete by Theorem 1.16. To show that f is a contraction,
we use the mean value theorem to write

|f(x)− f(y)| = |f ′(c)| · |x− y|

for some point c between x and y. Since f ′(x) = 1/(x+ 2), this actually gives

|f(x)− f(y)| = 1

c+ 2
· |x− y| ≤ 1

2
· |x− y|.

In particular, f is a contraction and the result follows by Banach’s fixed point theorem.



T4–5. Show that f(x) = x3 is a contraction on X = (0, 1/2), but it has no fixed point
in X. Does this contradict Banach’s theorem?

The function f is increasing, so it maps the interval (0, 1/2) into the interval

(0, 1/8) ⊂ (0, 1/2).

It does not have any fixed points because x3 = x implies that x = 0,±1 and none of these
points lies in X. To show that f is a contraction, we use the mean value theorem to write

|f(x)− f(y)| = |f ′(c)| · |x− y|

for some point c between x and y. Since f ′(x) = 3x2, we conclude that

|f(x)− f(y)| = 3c2 · |x− y| ≤ 3

4
· |x− y|.

This example does not contradict Banach’s theorem because X = (0, 1/2) is not complete.

T4–6. Suppose that f : X → Y is a continuous function and {xn} is a Cauchy sequence
in X. Does {f(xn)} have to be Cauchy as well?

No. For instance, f(x) = 1/x is continuous on (0,∞) and xn = 1/n is Cauchy, but the
sequence f(xn) = n is not Cauchy because f(xn)− f(xn−1) = 1 for all n.


