Homework 5. Solutions

1. Find the interior, the closure and the boundary of the following sets.
You need not justify your answers.

A:{(a:,y)eR2::cy20}, B:{(:E,y)eRzzy;éa:2}.

The set A is closed, so it is equal to its own closure, while

A° = {(z,y) e R? 12y > 0},
0A = {(z,y) eR* : 2y = 0} .

The set B is open, so it is equal to its own interior, while

B=R?’  9B={(z,y) eR*:y=2}.
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2. Let (X, T) be a topological space and let A C X. Show that

0A=2 <=  Ais both open and closed in X.

If A is both open and closed in X, then the boundary of A is
OA=ANX -—A=An(X-A)=2.
Conversely, suppose that A = @. Then Theorem 2.6 implies that
A° = A

Since A° C A C A by definition, these sets are all equal, so

A°=A=A = Ais both open and closed in X.
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3. Consider R with its usual topology. Find a set A C R such that A
and its interior A° do not have the same closure.

If A is any nonempty set whose interior is empty, then
A° =@ =— A°=g,

On the other hand, A cannot be empty since A C A by definition.

Some typical examples are thus sets A = {z} that only contain
one element, sets A = {1, z2,...,z,} that contain finitely many
elements, or even A = 7Z and A = Q. All of these sets have empty
interior because none of them contains an open interval.
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[4. Let (X,T) be a topological space and let A C X. Show that A isj

closed in X if and only if A contains its boundary.

If the set A is closed, then A = A by Theorem 2.3 and
OA=ANX -ACA=A.

Conversely, suppose that 0A C A. Then Theorem 2.6 gives
A=A°UOAC A°UAC A.

Since A C A by definition, this gives A = A and so A is closed.
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1. Suppose X, Y are topological spaces, let AC Y andleti: A —Y
be the inclusion map. Show that a function f: X — A is continuous
if and only if the composition i o f: X — Y is continuous.

The inclusion map 4 is continuous by Theorem 2.10. If we assume
that f is continuous, then 7 o f is the composition of continuous
functions, so it is continuous by Theorem 2.8.

Conversely, suppose i o f is continuous and U is open in A. We can
then write U = V N A for some set V' which is open in Y. Since

iTV)={zecA:i(x)eV}=VNA=T,

one finds that f~3(U) = f~1(i~Y(V)) = (io f)~1(V). Since V is
open in Y, this set must be open in X and so f is continuous.
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E

2. Suppose A C X is closed in X and B C Y is closed in Y. Show
that A x B is closed in X x Y. Hint: when is (z,y) not in A x B?

J

We need to show that the complement of A x B is open in X x Y.
Now, (z,y) ¢ A x B if and only if z ¢ A or y ¢ B. This gives

XxY—-AxB=(X-A)xYUXx (Y -B).

Since A is closed in X, its complement X — A is open in X and the
set (X — A) x Y is open in the product space X x Y. Using the
same argument, one finds that X x (Y — B) is open as well. Being
the union of open sets, the complement of A x B is thus open.
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3. Show that A is open in X x X when X is Hausdorff and

A={(z,y) e X x X : x # y}.

Let (x,y) be an arbitrary point of A. Then = # y and there exist
sets U, V which are open in X withx e U,y e Vand UNV = 2.
Now, the product U x V is a neighbourhood of (x,y) such that

(a,0) eUXxV = a€UandbeV
= a#b
= (a,b) € A.

It is thus a neighbourhood of (z,y) which lies within A. This shows
that every element of A is in A°, so A C A° C A and A is open.
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4. Suppose f,g: X — Y are continuous and Y is Hausdorff. Show
that the set A = {z € X : f(z) # g(x)} is open in X.

Let x € A be arbitrary. Then f(x) # g(x) and there exist sets U, V'
which are open in Y such that

f(z) e, g(xz) eV, unv =go.
Consider the set W = f~1(U) N g~(V). This is open in X and

yeW = f(y)eUandg(y) eV
= f(y) #9)

= yeA

Thus, W is a neighbourhood of x which lies within A. This shows
that every element of A isin A°, so A C A° C A and A is open.
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1. Suppose X = AU B is a partition of a topological space X and
define f: X — {0,1} by f(x) =0, ifz € A, and f(z) =1, if z € B.
Show that the function f is continuous.

To say that f is continuous is to say that f~1(U) is open in X for
every set U which is open in Y = {0,1}. The subsets of Y are

g, {0}, {1}, {01}
and the corresponding inverse images are
, A, B, X=AUB.

The sets @, X are open in X by definition and the sets A, B are
open in X by assumption. This implies that f~(U) is open in X.
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2. Show that the hyperbola H has two connected components.

H={(z,y) €R? : zy = 1}.

To say that xy = 1 is to say that z # 0 and y = 1/z. We now use
this fact to express H as the union of the two sets

Cy={(z,1/z) e R? : z > 0},
C_={(z,1/2) € R*:z < 0}.

Note that C, is the image of the function f: (0,00) — R? which
is defined by f(z) = (z,1/z). Since f is continuous and (0, c0) is
connected, C is connected and so is C_ for similar reasons. This
shows that H is the union of two connected sets. Were H connected
itself, its projection onto the first variable would be connected. This
is not the case, however, because p;(H) = (—o0,0) U (0, 00).
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3. Show that there is no continuous surjection f: H — A when H is
the hyperbola of the previous problem and A = (0,1) U (2,3) U (4,5).

First of all, we express H = Hy U Hy and A = A1 U Ay U Ag as the
disjoint union of connected components. If a function f: H — A is
continuous, then its restriction f: H; — A must be continuous for
each i, so the image f(H;) must be connected as well.

Since f(H;) is a connected subset of A; U Ay U As, it lies within
either Ay or As U As. If it actually lies in A5 U Ag, then it lies within
either Ay or As. This means that each f(H;) is contained in a single
interval A;. Thus, the image of f is contained in two intervals A;,
so the image is a proper subset of A and f is not surjective.



Homework 7. Solutions

4. Let (X,T) be a topological space and suppose A1, As,..., A, are
connected subsets of X such that Ax N Ag41 is nonempty for each k.
Show that the union of these sets is connected. Hint: Use induction.

When n = 1, the union is equal to A; and this set is connected by
assumption. Suppose that the result holds for n sets and consider
the union of n + 1 sets. This union has the form

U:AIU“‘UAnUAn+1:BUAn+1,

where B is connected by the induction hypothesis. Since A,,+1 has
a point in common with A,, it has a point in common with B. In
particular, the union B U A, 1 is connected and the result follows.
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Cl. Show that A = {(z,y) € R?: 2* + (y — 1)2 < 1} is compact. )

First of all, the set A is bounded because its points satisfy
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To show that A is also closed in R2, we consider the function
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f:R? SR, flz,y) =2+ (y — 1)

Since f is continuous and (—oo, 1] is closed in R, its inverse image
is closed in R?. This means that A is closed in R2. Since A is both
bounded and closed in R?, we conclude that A is compact.
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[2. Let (X,T) be a topological space whose topology T is discrete.j

Show that a subset A C X is compact if and only if it is finite.

First, suppose that A is finite, say A = {z1,x2,...,2,}. If some
open sets U; form an open cover of A, then each xj must belong to
one of the sets, say U;, . This implies that U;,,U,,,...,U;, form a
finite subcover of A, so the set A is compact.

Conversely, suppose that A is compact and recall that every subset
of X is open in the discrete topology. We consider the sets {x} for
each x € A. These form an open cover of A, so finitely many of
them cover A by compactness. It easily follows that

Ac | JmitcA = A={vyz,... 2.}
=1
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3. Let C, be a sequence of nonempty, closed subsets of a compact
space X such that C,, D C),41 for each n. Show that the intersection
of these sets is nonempty. Hint: One has | J(X — C;) = X — ;.

Suppose the intersection is empty. Then we actually have

X=X—ﬁci=[j(X_Ci)a
i=1 i=1

so the sets X — C; form an open cover of X. Since X is compact,
it is covered by finitely many sets, say the first k. This gives

k k
X=JX-C)=X-(\Ci=X-C,

i=1 i=1

so the set C, must be empty, contrary to assumption.
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4. Suppose X C R is compact and f: X — X is continuous with

[f (@) = f(y)l <lz—yl forallz#y.

Show that f has a fixed point. Hint: suppose that g(x) = |f(z) — z|
attains a positive minimum at the point zy and consider g(f(zo)).

Consider the function g: X — R defined by g(z) = |f(z) — z|. Itis
continuous on a compact set, so it attains a minimum value at some
point xg. If the minimum value is zero, then f(xg) = zp and ¢ is a
fixed point. Otherwise, f(zg) # xo and we get

9(f(x0)) = |f(f(z0)) — f(z0)| < |f(20) — w0| = g(w0),

contrary to the fact that g(z() is the minimum value attained by g.
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