
Homework 5. Solutions

1. Find the interior, the closure and the boundary of the following sets.

You need not justify your answers.

A =
{

(x, y) ∈ R2 : xy ≥ 0
}

, B =
{

(x, y) ∈ R2 : y 6= x2
}

.

The set A is closed, so it is equal to its own closure, while

A◦ =
{

(x, y) ∈ R2 : xy > 0
}

,

∂A =
{

(x, y) ∈ R2 : xy = 0
}

.

The set B is open, so it is equal to its own interior, while

B = R2, ∂B =
{

(x, y) ∈ R2 : y = x2
}

.
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2. Let (X,T ) be a topological space and let A ⊂ X. Show that

∂A = ∅ ⇐⇒ A is both open and closed in X.

If A is both open and closed in X, then the boundary of A is

∂A = A ∩X −A = A ∩ (X −A) = ∅.

Conversely, suppose that ∂A = ∅. Then Theorem 2.6 implies that

A◦ = A.

Since A◦ ⊂ A ⊂ A by definition, these sets are all equal, so

A◦ = A = A =⇒ A is both open and closed in X.
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3. Consider R with its usual topology. Find a set A ⊂ R such that A

and its interior A◦ do not have the same closure.

If A is any nonempty set whose interior is empty, then

A◦ = ∅ =⇒ A◦ = ∅.

On the other hand, A cannot be empty since A ⊂ A by definition.

Some typical examples are thus sets A = {x} that only contain

one element, sets A = {x1, x2, . . . , xn} that contain finitely many

elements, or even A = Z and A = Q. All of these sets have empty

interior because none of them contains an open interval.



Homework 5. Solutions

4. Let (X,T ) be a topological space and let A ⊂ X. Show that A is

closed in X if and only if A contains its boundary.

If the set A is closed, then A = A by Theorem 2.3 and

∂A = A ∩X −A ⊂ A = A.

Conversely, suppose that ∂A ⊂ A. Then Theorem 2.6 gives

A = A◦ ∪ ∂A ⊂ A◦ ∪A ⊂ A.

Since A ⊂ A by definition, this gives A = A and so A is closed.



Homework 6. Solutions

1. Suppose X,Y are topological spaces, let A ⊂ Y and let i : A → Y

be the inclusion map. Show that a function f : X → A is continuous

if and only if the composition i ◦ f : X → Y is continuous.

The inclusion map i is continuous by Theorem 2.10. If we assume

that f is continuous, then i ◦ f is the composition of continuous

functions, so it is continuous by Theorem 2.8.

Conversely, suppose i ◦ f is continuous and U is open in A. We can

then write U = V ∩A for some set V which is open in Y . Since

i−1(V ) = {x ∈ A : i(x) ∈ V } = V ∩A = U,

one finds that f−1(U) = f−1(i−1(V )) = (i ◦ f)−1(V ). Since V is

open in Y , this set must be open in X and so f is continuous.
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2. Suppose A ⊂ X is closed in X and B ⊂ Y is closed in Y . Show

that A×B is closed in X × Y . Hint: when is (x, y) not in A×B?

We need to show that the complement of A×B is open in X × Y .

Now, (x, y) /∈ A×B if and only if x /∈ A or y /∈ B. This gives

X × Y −A×B = (X −A)× Y ∪X × (Y −B).

Since A is closed in X, its complement X −A is open in X and the

set (X − A) × Y is open in the product space X × Y . Using the

same argument, one finds that X × (Y −B) is open as well. Being

the union of open sets, the complement of A×B is thus open.
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3. Show that A is open in X ×X when X is Hausdorff and

A = {(x, y) ∈ X ×X : x 6= y}.

Let (x, y) be an arbitrary point of A. Then x 6= y and there exist

sets U, V which are open in X with x ∈ U , y ∈ V and U ∩ V = ∅.

Now, the product U × V is a neighbourhood of (x, y) such that

(a, b) ∈ U × V =⇒ a ∈ U and b ∈ V

=⇒ a 6= b

=⇒ (a, b) ∈ A.

It is thus a neighbourhood of (x, y) which lies within A. This shows

that every element of A is in A◦, so A ⊂ A◦ ⊂ A and A is open.
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4. Suppose f, g : X → Y are continuous and Y is Hausdorff. Show

that the set A = {x ∈ X : f(x) 6= g(x)} is open in X.

Let x ∈ A be arbitrary. Then f(x) 6= g(x) and there exist sets U, V

which are open in Y such that

f(x) ∈ U, g(x) ∈ V, U ∩ V = ∅.

Consider the set W = f−1(U) ∩ g−1(V ). This is open in X and

y ∈ W =⇒ f(y) ∈ U and g(y) ∈ V

=⇒ f(y) 6= g(y)

=⇒ y ∈ A.

Thus, W is a neighbourhood of x which lies within A. This shows

that every element of A is in A◦, so A ⊂ A◦ ⊂ A and A is open.
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1. Suppose X = A ∪ B is a partition of a topological space X and

define f : X → {0, 1} by f(x) = 0, if x ∈ A, and f(x) = 1, if x ∈ B.

Show that the function f is continuous.

To say that f is continuous is to say that f−1(U) is open in X for

every set U which is open in Y = {0, 1}. The subsets of Y are

∅, {0}, {1}, {0, 1}

and the corresponding inverse images are

∅, A, B, X = A ∪B.

The sets ∅,X are open in X by definition and the sets A,B are

open in X by assumption. This implies that f−1(U) is open in X.
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2. Show that the hyperbola H has two connected components.

H = {(x, y) ∈ R2 : xy = 1}.

To say that xy = 1 is to say that x 6= 0 and y = 1/x. We now use

this fact to express H as the union of the two sets

C+ = {(x, 1/x) ∈ R2 : x > 0},

C− = {(x, 1/x) ∈ R2 : x < 0}.

Note that C+ is the image of the function f : (0,∞) → R2 which

is defined by f(x) = (x, 1/x). Since f is continuous and (0,∞) is

connected, C+ is connected and so is C− for similar reasons. This

shows that H is the union of two connected sets. Were H connected

itself, its projection onto the first variable would be connected. This

is not the case, however, because p1(H) = (−∞, 0) ∪ (0,∞).
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3. Show that there is no continuous surjection f : H → A when H is

the hyperbola of the previous problem and A = (0, 1) ∪ (2, 3) ∪ (4, 5).

First of all, we express H = H1 ∪H2 and A = A1 ∪A2 ∪A3 as the

disjoint union of connected components. If a function f : H → A is

continuous, then its restriction f : Hi → A must be continuous for

each i, so the image f(Hi) must be connected as well.

Since f(Hi) is a connected subset of A1 ∪ A2 ∪A3, it lies within

either A1 or A2 ∪A3. If it actually lies in A2∪A3, then it lies within

either A2 or A3. This means that each f(Hi) is contained in a single

interval Aj . Thus, the image of f is contained in two intervals Aj ,

so the image is a proper subset of A and f is not surjective.
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4. Let (X,T ) be a topological space and suppose A1, A2, . . . , An are

connected subsets of X such that Ak ∩ Ak+1 is nonempty for each k.

Show that the union of these sets is connected. Hint: Use induction.

When n = 1, the union is equal to A1 and this set is connected by

assumption. Suppose that the result holds for n sets and consider

the union of n+ 1 sets. This union has the form

U = A1 ∪ · · · ∪An ∪An+1 = B ∪An+1,

where B is connected by the induction hypothesis. Since An+1 has

a point in common with An, it has a point in common with B. In

particular, the union B ∪An+1 is connected and the result follows.



Homework 8. Solutions

1. Show that A = {(x, y) ∈ R
2 : x4 + (y − 1)2 ≤ 1} is compact.

First of all, the set A is bounded because its points satisfy

x4 ≤ x4 + (y − 1)2 ≤ 1 =⇒ |x| ≤ 1,

(y − 1)2 ≤ x4 + (y − 1)2 ≤ 1 =⇒ |y| ≤ |y − 1|+ 1 ≤ 2.

To show that A is also closed in R
2, we consider the function

f : R2 → R, f(x, y) = x4 + (y − 1)2.

Since f is continuous and (−∞, 1] is closed in R, its inverse image

is closed in R
2. This means that A is closed in R

2. Since A is both

bounded and closed in R
2, we conclude that A is compact.
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2. Let (X,T ) be a topological space whose topology T is discrete.

Show that a subset A ⊂ X is compact if and only if it is finite.

First, suppose that A is finite, say A = {x1, x2, . . . , xn}. If some

open sets Ui form an open cover of A, then each x
k
must belong to

one of the sets, say Uik
. This implies that Ui1

, Ui2
, . . . , Uin

form a

finite subcover of A, so the set A is compact.

Conversely, suppose that A is compact and recall that every subset

of X is open in the discrete topology. We consider the sets {x} for

each x ∈ A. These form an open cover of A, so finitely many of

them cover A by compactness. It easily follows that

A ⊂
n
⋃

i=1

{xi} ⊂ A =⇒ A = {x1, x2, . . . , xn}.
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3. Let Cn be a sequence of nonempty, closed subsets of a compact

space X such that Cn ⊃ Cn+1 for each n. Show that the intersection

of these sets is nonempty. Hint: One has
⋃

(X − Ci) = X −
⋂

Ci.

Suppose the intersection is empty. Then we actually have

X = X −

∞
⋂

i=1

Ci =

∞
⋃

i=1

(X − Ci),

so the sets X − Ci form an open cover of X. Since X is compact,

it is covered by finitely many sets, say the first k. This gives

X =

k
⋃

i=1

(X −Ci) = X −

k
⋂

i=1

Ci = X − C
k
,

so the set C
k
must be empty, contrary to assumption.
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4. Suppose X ⊂ R is compact and f : X → X is continuous with

|f(x)− f(y)| < |x− y| for all x 6= y.

Show that f has a fixed point. Hint: suppose that g(x) = |f(x) − x|
attains a positive minimum at the point x0 and consider g(f(x0)).

Consider the function g : X → R defined by g(x) = |f(x)− x|. It is
continuous on a compact set, so it attains a minimum value at some

point x0. If the minimum value is zero, then f(x0) = x0 and x0 is a

fixed point. Otherwise, f(x0) 6= x0 and we get

g(f(x0)) = |f(f(x0))− f(x0)| < |f(x0)− x0| = g(x0),

contrary to the fact that g(x0) is the minimum value attained by g.
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