
Homework 1. Solutions

1. Show that the discrete metric satisfies the properties of a metric.

The discrete metric is defined by the formula

d(x, y) =

{

1 if x 6= y
0 if x = y

}

.

It is clearly symmetric and non-negative with d(x, y) = 0 if and only

if x = y. It remains to establish the triangle inequality

d(x, y) ≤ d(x, z) + d(z, y).

If x = y, then the left hand side is zero and the inequality certainly

holds. If x 6= y, then the left hand side is equal to 1. Since x 6= y,
we must have either z 6= x or else z 6= y. Thus, the right hand side

is at least 1 and the triangle inequality holds in any case.



Homework 1. Solutions

2. Compute the distances d2(f, g) and d∞(f, g) when f, g ∈ C[0, 1]
are the functions defined by f(x) = x and g(x) = x4.

Using the definition of the d2 metric, one finds that

d2(f, g)
2 =

∫

1

0

(

x− x4
)2

dx

=

∫

1

0

(x2 − 2x5 + x8) dx =
1

3
−

2

6
+

1

9
=

1

9

and so d2(f, g) =
1

3
. The distance d∞(f, g) is the maximum of

h(x) = |x− x4| = x− x4, 0 ≤ x ≤ 1.

Since h(0) = h(1) = 0 and h′(x) = 1− 4x3, it easily follows that

d∞(f, g) = h(4−1/3) = 4−1/3(1− 4−1) = 3 · 4−4/3.
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3. Show that the following functions do not define metrics on R.

d(x, y) = |x− 2y|, d(x, y) = (x− y)2, d(x, y) = |xy|.

The first function does not satisfy any of the desired properties. For

instance, d(1, 1) = 1 6= 0, while d(2, 1) = 0 and d(2, 1) 6= d(1, 2).

The second function does not satisfy the triangle inequality, as

d(1, 2) + d(2, 3) = 1 + 1 < 4 = d(1, 3).

Finally, the third function is symmetric, but it does not satisfy the

other two properties. For instance, d(0, 1) = 0 and d(1, 1) = 1 6= 0.



Homework 1. Solutions

4. Consider the space C[0, 1] with the d1 metric. For which values of

the integer n ≥ 1 does f(x) = xn lie in the open ball B(x, 2/5)?

To say that xn lies in the open ball B(x, 2/5) is to say that

d1(x
n, x) < 2/5.

Since xn ≤ x for all x ∈ [0, 1], the left hand side is equal to

d1(x
n, x) =

∫

1

0

(x− xn) dx =
1

2
−

1

n+ 1
.

In particular, the desired condition holds if and only if

1

2
−

1

n+ 1
<

2

5
⇐⇒

1

n+ 1
>

1

10
⇐⇒ n < 9.



Homework 2. Solutions

1. Consider the upper half plane A = {(x, y) ∈ R
2 : y > 0}. Use the

definition of an open set to show that A is open in R
2.

Let (x, y) ∈ A be given. Then y > 0 and we claim that the open

ball B((x, y), y) is contained entirely within A. In fact, one has

(a, b) ∈ B((x, y), y) =⇒ (x− a)2 + (y − b)2 < y2

=⇒ (y − b)2 < y2

=⇒ b(b− 2y) < 0

=⇒ 0 < b < 2y

=⇒ (a, b) ∈ A.

This shows that B((x, y), y) ⊂ A, so the set A is open in R
2.



Homework 2. Solutions

2. Show that the following set is open in R
2.

B =
{

(x, y) ∈ R
2 : x2 + y2 < 4x and y > 0

}

.

The given set is the intersection B = B1 ∩B2, where

B1 =
{

(x, y) ∈ R
2 : x2 + y2 < 4x

}

and

B2 =
{

(x, y) ∈ R
2 : y > 0

}

.

Note that B2 is the upper half plane and this is open in R
2 by the

previous problem. The set B1 can be expressed in the form

B1 =
{

(x, y) ∈ R
2 : (x− 2)2 + y2 < 4

}

= B((2, 0), 2),

so it is an open ball in R
2 and thus open. Being the intersection of

two open sets, the given set B is then open as well.



Homework 2. Solutions

3. Show that the following sets are open in R.

A =
{

x ∈ R : x3 > x
}

, B =

{

0 < x < 1 :
1

x
/∈ Z

}

.

When it comes to the first set, one has

x3 > x ⇐⇒ x(x2 − 1) > 0 ⇐⇒ x(x+ 1)(x− 1) > 0.

This implies that A = (−1, 0) ∪ (1,∞) and so A is open in R. The

second set is the interval (0, 1) with the points 1

2
, 1
3
, 1
4
, · · · removed.

It is open because it is the union of open intervals, namely

B =

(

1

2
, 1

)

∪

(

1

3
,
1

2

)

∪

(

1

4
,
1

3

)

∪ · · · =
⋃

n∈N

(

1

n+ 1
,
1

n

)

.



Homework 2. Solutions

4. Is the set Q of all rational numbers closed in R? Why or why not?

We use the first part of Theorem 1.4. Were Q closed in R, every

convergent sequence of rational numbers would have to converge to

a rational number. However, this is not really the case. As a simple

example, consider a rational approximation of
√
2, say

x1 = 1.4,

x2 = 1.41,

x3 = 1.414,

x4 = 1.4142

and so on. This is a convergent sequence of rational numbers, but

its limit
√
2 is not a rational number. Thus, Q is not closed in R.



Homework 3. Solutions

1. Suppose (X, d) is a metric space and f : X → R is continuous.

Show that the set A = {x ∈ X : f(x) = 0} is closed in X.

We show that the complement of A is open in X. Noting that

X −A = {x ∈ X : f(x) 6= 0}

= {x ∈ X : f(x) < 0} ∪ {x ∈ X : f(x) > 0},

we see that X −A can be expressed as the union

X −A = f−1(−∞, 0) ∪ f−1(0,∞).

Since (−∞, 0) is open in R, its inverse image must be open in X by

continuity. The same is true for the inverse image of (0,∞). This

means that X −A is the union of two open sets and thus open.
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2. Show that f(x) =
√
x2 + 1 is Lipschitz continuous on [0, 1].

According to Theorem 1.8, it suffices to show that

f ′(x) =
2x

2
√
x2 + 1

=
x

√
x2 + 1

is bounded on [0, 1]. In particular, it suffices to note that

|f ′(x)| =

√

x2

x2 + 1
< 1.

One could also try to find the maximum value of |f ′(x)|, but this

is not really necessary. In fact, one could simply say that |f ′(x)| is
continuous, so it does attain a maximum value on [0, 1].
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3. Let (X, d) be a metric space and fix some y ∈ X. Show that the

function f : X → R defined by f(x) = d(x, y) is Lipschitz continuous.

Letting x, z ∈ X be arbitrary, we use the triangle inequality to get

f(x) = d(x, y) ≤ d(x, z) + d(z, y) = d(x, z) + f(z)

f(z) = d(z, y) ≤ d(z, x) + d(x, y) = d(x, z) + f(x).

Once we now combine these equations, we may conclude that

|f(x)− f(z)| ≤ d(x, z).

This shows that the function f : X → R is Lipschitz continuous.
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4. Consider the sequence of functions defined by fn(x) = xe−nx for

each integer n ≥ 1. Show that fn converges uniformly on [0, 1].

When 0 < x ≤ 1, one has 0 < e−x < 1, so e−nx → 0 as n → ∞.

Thus, fn(x) converges pointwise to the zero function. Since

f ′

n
(x) = e−nx − nxe−nx = (1− nx)e−nx,

the function fn is increasing for x < 1

n
and decreasing for x > 1

n
, so

sup
0≤x≤1

|fn(x)| = sup
0≤x≤1

fn(x) = fn(1/n) =
1

ne
.

In particular, fn converges uniformly on [0, 1] because

lim
n→∞

sup
0≤x≤1

|fn(x)| = lim
n→∞

1

ne
= 0.



Homework 4. Solutions

1. Which of the following sets are complete? Explain.

A = Z, B = (0, 2), C = {x ∈ R : sinx ≤ 0}.

According to Theorem 1.16, a subset of R is complete if and only if

it is closed. In our case, Z is complete because its complement is

R− Z =
⋃

x∈Z

(x, x+ 1)

and this is open in R. The set B is not complete because xn = 1/n
is a sequence of points in B whose limit is not in B. Finally,

R− C = {x ∈ R : f(x) > 0} = f−1(0,∞)

with f(x) = sinx continuous, so R−C is open and C is complete.
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2. Use the definition of a Cauchy sequence to show that {(xn, yn)} is

a Cauchy sequence in R
2, if {xn}, {yn} are Cauchy sequences in R.

Let ε > 0 be given. Then there exist integers N1, N2 > 0 such that

|xm − xn| < ε/
√
2 for all m,n ≥ N1;

|ym − yn| < ε/
√
2 for all m,n ≥ N2.

Setting N = max{N1, N2} for convenience, we conclude that

(xm − xn)
2 + (ym − yn)

2 <
ε2

2
+

ε2

2
= ε2

for all m,n ≥ N . Thus, {(xn, yn)} is a Cauchy sequence in R
2.
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3. Suppose f : [a, b] → [a, b] is a differentiable function such that

L = sup
a≤x≤b

|f ′(x)|

satisfies L < 1. Show that f has a unique fixed point in [a, b].

Let x, y ∈ [a, b]. Using the mean value theorem, one finds that

|f(x)− f(y)| = |f ′(c)| · |x− y| ≤ L · |x− y|

for some point c between x and y. Since L < 1 by assumption, this

shows that f is a contraction on [a, b]. On the other hand, [a, b] is a
closed subset of R and thus complete. It follows by Banach’s fixed

point theorem that f has a unique fixed point in [a, b].



Homework 4. Solutions

4. Show that there is a unique x ∈ [1, 2] such that x4 − x− 2 = 0.

The function f(x) = (x+ 2)1/4 is increasing, so it maps [1, 2] into

[f(1), f(2)] = [31/4, 41/4] ⊂ [11/4, 161/4] = [1, 2].

To see that the previous problem is applicable, we note that

L = sup
1≤x≤2

|f ′(x)| = sup
1≤x≤2

1

4
· (x+ 2)−3/4 = 4−1 · 3−3/4 < 1.

Thus, there exists a unique x ∈ [1, 2] such that (x + 2)1/4 = x and

this is the only point in [1, 2] such that x4 = x+ 2.
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