Homework 1. Solutions

Cl. Show that the discrete metric satisfies the properties of a metric. )

The discrete metric is defined by the formula

weo=-{§ 1520}

It is clearly symmetric and non-negative with d(x,y) = 0 if and only
if x = y. It remains to establish the triangle inequality

d(z,y) < d(z,z)+d(z,y).

If = y, then the left hand side is zero and the inequality certainly
holds. If z # y, then the left hand side is equal to 1. Since = # vy,
we must have either z £ x or else z # y. Thus, the right hand side
is at least 1 and the triangle inequality holds in any case.



Homework 1. Solutions

[2. Compute the distances da(f,g) and d(f,g) when f,g € C]0, 1]]

are the functions defined by f(z) = z and g(z) = z*.

Using the definition of the do metric, one finds that

1
df0f = [ (0=a")’ do
0
! 1 2
2 5, .8

- ~9 de = - — 2
/0 (z x° + x°) dz 378 +

and so da(f, g) = % The distance do(f, g) is the maximum of

h(z) = |z — 2t =2 — 2*, 0<z<l1.

Since h(0) = h(1) = 0 and A/(x) = 1 — 423, it easily follows that

do(f.9) = h(4~%) =472 (1 —471) = 3. 4712,
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3. Show that the following functions do not define metrics on R.

dz,y) =z —2yl, dz,y)=(=-y?  d=y) =yl

The first function does not satisfy any of the desired properties. For
instance, d(1,1) =1 # 0, while d(2,1) = 0 and d(2,1) # d(1,2).

The second function does not satisfy the triangle inequality, as

d(1,2) +d(2,3) =14+ 1 < 4 =d(1,3).

Finally, the third function is symmetric, but it does not satisfy the
other two properties. For instance, d(0,1) =0and d(1,1) =1 # 0.
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[4. Consider the space C'[0, 1] with the d; metric. For which values of]

the integer n > 1 does f(x) = z™ lie in the open ball B(z,2/5)?

To say that 2™ lies in the open ball B(x,2/5) is to say that
di(z",x) < 2/5.
Since ™ < z for all z € [0, 1], the left hand side is equal to

1
n+1"

1
dy(z", x) :/ (x —2")dx = 1
0 2

In particular, the desired condition holds if and only if

< > < .
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[

1. Consider the upper half plane A = {(z,y) € R? : y > 0}. Use the

definition of an open set to show that A is open in R2.

]

Let (x,y) € A be given.

(a,b) € B((z,

This shows that B((x

Y)Y

Then y > 0 and we claim that the open
ball B((z,y),y) is contained entirely within A. In fact, one has

Y),y)

—
—
—
—
—

(x—a)®+(y—b)?°<
(y—0)* <y’
b(b—2y)<0
0<b<2y
(a,b) € A.

) C A, so the set A is open in R?.
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2. Show that the following set is open in R?.

B={(z,y) e R*:2% +y* <4z and y > 0}.

The given set is the intersection B = By N B, where

By = {(z,y) € R? : 2% + y* < 4z} and
Bgz{(m,y)€R2zy>0}.

Note that By is the upper half plane and this is open in R? by the
previous problem. The set By can be expressed in the form

B = {(z,y) €R?: (z - 2)* +y* <4} = B((2,0),2),

so it is an open ball in R? and thus open. Being the intersection of
two open sets, the given set B is then open as well.
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3. Show that the following sets are open in R.

A={zeR:2*>z}, B:{0<w<lzé¢Z}.

When it comes to the first set, one has
P>r = 22 -1)>0 < z@@+1)(z—-1)>0.

This implies that A = (—1,0) U (1,00) and so A is open in R. The
second set is the interval (0, 1) with the points %, %, }1, -+ removed.
It is open because it is the union of open intervals, namely

o= (3o (1) (b - U ()
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<4. Is the set Q of all rational numbers closed in R? Why or why not? )

We use the first part of Theorem 1.4. Were Q closed in R, every
convergent sequence of rational numbers would have to converge to
a rational number. However, this is not really the case. As a simple
example, consider a rational approximation of /2, say

x1 =14,
T9 = 1.41,
r3 = 1.414,
xq = 1.4142

and so on. This is a convergent sequence of rational numbers, but
its limit v/2 is not a rational number. Thus, Q is not closed in R.
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[1. Suppose (X,d) is a metric space and f: X — R is continuous.]

Show that the set A = {z € X : f(z) = 0} is closed in X.

We show that the complement of A is open in X. Noting that

X—-A={reX: f(x)#0}
={reX: flx)<0}U{zeX: f(x) >0},

we see that X — A can be expressed as the union
X —A=f"(=00,0)U f7(0,00).

Since (—00,0) is open in R, its inverse image must be open in X by
continuity. The same is true for the inverse image of (0,00). This
means that X — A is the union of two open sets and thus open.
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C2. Show that f(z) = V22 + 1 is Lipschitz continuous on [0, 1]. )

According to Theorem 1.8, it suffices to show that

- 2x - T
2Wx2+1 Va2 +1

f'(x)

is bounded on [0, 1]. In particular, it suffices to note that

2
F@) =y 5 <L

One could also try to find the maximum value of |f’(x)|, but this
is not really necessary. In fact, one could simply say that |f'(x)] is
continuous, so it does attain a maximum value on [0, 1].
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[3. Let (X, d) be a metric space and fix some y € X. Show that the]

function f: X — R defined by f(x) = d(x,y) is Lipschitz continuous.

Letting =,z € X be arbitrary, we use the triangle inequality to get

(z,2) +d(z,y) = d(z,2) + f(2)
(z,2) + d(2,y) = d(x, 2) + f ().

Once we now combine these equations, we may conclude that

[f(x) = f(2)| < d(z,2).

This shows that the function f: X — R is Lipschitz continuous.

d
d
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[4. Consider the sequence of functions defined by f,(z) = ze™"™* for]

each integer n > 1. Show that f,, converges uniformly on [0, 1].

When 0 <z <1,onehas0<e ™ <1, s0e ™ —0asn— 0.
Thus, fn(z) converges pointwise to the zero function. Since

fi(x) =e " —nre ™ = (1 —nx)e "™,

the function f, is increasing for x < % and decreasing for z > % so

sup |fu(@)] = sup fulz) = fall/n)

0<z<1 ne

In particular, f, converges uniformly on [0, 1] because

1
lim sup |fn(z)]= lim — =0.

n—oo nggl n—,oo Ne
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1. Which of the following sets are complete? Explain.

A=1Z, B =(0,2), C={zeR:sinz <0}.

According to Theorem 1.16, a subset of R is complete if and only if
it is closed. In our case, Z is complete because its complement is

R-Z=|J@z+1)
TEZ

and this is open in R. The set B is not complete because x,, = 1/n
is a sequence of points in B whose limit is not in B. Finally,

R—C={zecR: f(zx)>0}=f10,00)

with f(z) = sinz continuous, so R — C is open and C' is complete.
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[2. Use the definition of a Cauchy sequence to show that {(z,,yn)} is]

a Cauchy sequence in R?, if {x,,}, {y,} are Cauchy sequences in R.

Let € > 0 be given. Then there exist integers N1, No > 0 such that

|Zm — x| < €/V/2 for all m,n > Ni;

[Ym — yn| < 6/\/5 for all m,n > Ns.
Setting N = max{Ny, Ny} for convenience, we conclude that
2 2
€ €
($m_$n)2+(ym_yn)2 < 5—1—5 :52

for all m,n > N. Thus, {(z,,yn)} is a Cauchy sequence in R?.
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3. Suppose f: [a,b] — [a,b] is a differentiable function such that

L= sup |f'(z)]
a<z<b

satisfies L < 1. Show that f has a unique fixed point in [a, b].

Let x,y € [a,b]. Using the mean value theorem, one finds that

[f@) = fWl=1f Ol lz -yl <L |z —y|

for some point ¢ between x and y. Since L < 1 by assumption, this
shows that f is a contraction on [a, b]. On the other hand, [a,)] is a
closed subset of R and thus complete. It follows by Banach's fixed
point theorem that f has a unique fixed point in [a, b].
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C4. Show that there is a unique = € [1,2] such that 2* — 2 — 2 = 0. )

The function f(z) = (z 4+ 2)'/* is increasing, so it maps [1,2] into
(1), F(2)] = [3Y%, 44 € 1Y%, 1644 = [1,2).

To see that the previous problem is applicable, we note that

1
L= sup |f(z)]= sup 7 (z+2) =473 <1,
1<e<2 1<z<2 4

Thus, there exists a unique = € [1,2] such that (z 4 2)/* = = and
this is the only point in [1,2] such that 2% = = + 2.
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