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(Theorem 3.1 — Product norm

:

Suppose X, Y are normed vector spaces. Then one may define a norm
on the product X x Y by letting ||(z,v)|| = ||z|| + ||y]].

>
J

Proof. To see that the given formula defines a norm, we note that
lzl[ +1lyll =0 <= || =yl = 0.

This implies that ||(z,y)|| = 0 if and only if z = y = 0, while
1Az, Ay)l| = [IAz]| + [[Ayl| = [A] - [I(z, )]

Adding the triangle inequalities in X and Y, one also finds that

(@1, 91) + (22, 92) || < [[(1, y2)] + [[(@2, y2)]|

In particular, the triangle inequality holds in X x Y as well. |



(Theorem 3.2 — Continuity of operations

L

The following functions are continuous in any normed vector space X .

@ The norm f(x) = ||x||, where € X.

Proof. Using the triangle inequality, one finds that

lzl| = llz —y + yl| < |l -yl + [yl
Iyl = lly — = + 2| < |ly — = + [|=|

for all &,y € X. Rearranging terms now gives

(@) = f(y)] < [l -yl

and this makes f Lipschitz continuous, hence also continuous.



(Theorem 3.2 — Continuity of operations

S

The following functions are continuous in any normed vector space X .

@ The vector addition g(x,y) = ¢ + y, where x,y € X.

Proof. Using the triangle inequality, one finds that

Hg(way) —g(u,v)H - Hx—i_y_u_,UH
< |z —ul| +[ly — vl

= [l(z,y) — (u,v)]].

In particular, g is Lipschitz continuous, hence also continuous.



L

(Theorem 3.2 — Continuity of operations

The following functions are continuous in any normed vector space X.

© The scalar multiplication h(\, ) = A\x, where A € F and € X.

Proof. To show that A is continuous at the point (A, x), let ¢ > 0
be given. Using the triangle inequality, one easily finds that

[[h(A, ) — h(p, y)|| = [\ — Ay + Ay — py|
<Al =yl + (A = pl - [yl

Suppose now that ||(A, ) — (i, y)|| < d, where

. 9 IS
6 = min , ,1 0.
21A + 17 2||z|| + 2

Then || -[[z —yl| <4[A[ < /2 and [[y[| <0+ ||| <1+ ], so
one also has ||h(\, ) — h(p, y)|| <e/2+0(1+||z|]) <e.



(Theorem 3.3 — Bounded means continuous

L

Suppose X, Y are normed vector spaces and let T: X — Y be linear.

Then T is continuous if and only if T is bounded.

Proof. Suppose first that T is bounded. Then there exists a real
number M > 0 such that ||T(x)|| < M||x|| for all x € X. Given
any € > 0, we may thus let § = ¢/M to conclude that

le—yll < = |[|IT(x)-T(y)ll < Mllz -yl <e.

Conversely, suppose T is continuous and let 6 > 0 be such that

lz—yll<é = [[T(x)-T(y)ll <L

% satisfies ||x|| < 4.

This gives ||T(z)|| < 1, so |[T(2)|| < 2||2|| by linearity. |

Given any nonzero z € X, we note that = =

6

>
J
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KTheorem 3.4 — Norm of an operator

Suppose X,Y are normed vector spaces. Then the set L(X,Y") of all
bounded, linear operators T: X — Y is itself a normed vector space.
In fact, one may define a norm on L(X,Y") by letting

|7 ()|

|IT'l| = sup
270 |l

Proof, part 1. First, we check that L(X,Y) is a vector space.
Suppose that T7,7T> € L(X,Y) and let A\ be a scalar. To see that
the operators 17 + 15 and X1} are both bounded, we note that

T2 () + Ta(2)|| < [|Ta(2)[| + |[Ta(2)]] < Cilz]] + Coflz|],
[IXTa ()| = (A [| Ty (2)[| < [A|Calf]].

Since T7 + T» and AT are also linear, they are both in L(X,Y).



~

KTheorem 3.4 — Norm of an operator

Suppose X,Y are normed vector spaces. Then the set L(X,Y") of all
bounded, linear operators T: X — Y is itself a normed vector space.
In fact, one may define a norm on L(X,Y") by letting

|7 ()|

|IT'l| = sup
270 |l

Proof, part 2. We check that the given formula defines a norm.
When ||T'|| = 0, we have ||T'(x)|| = 0 for all € X and this implies
that T is the zero operator. Since ||\T'(x)|| = |A| - ||T'(x)|| for any
scalar ), it easily follows that ||\T'|| = |A|-||T||. Thus, it remains to
prove the triangle inequality for the operator norm. Since

1S(z) + T()[| < [[S@)[| + [IT(@)[| < |IS]- [l + [T - [|]]

for all  # 0, we find that ||S + T'|| < ||S|| + ||T|], as needed. M



/Theorem 3.5 — Euclidean norm A
Suppose that X is a vector space with basis @1, ®s,..., ;. Then one
may define a norm on X using the formula

k k
=) cwi = |lxlla=|>lal~
i=1 =1
\This norm is also known as the Euclidean or standard norm on X. )

Proof. By definition, one has ||x||2 = ||c||o. This is a norm on R¥,
so one may easily check that it is also a norm on X. For instance,

llz]la =0 <= lle|l2=0 <= ¢=0
<= x =0.

This proves the first property that a norm needs to satisfy, while the
other two properties can be checked in a similar manner. [



(Theorem 3.6 — Equivalence of all norms

kThe norms of a finite-dimensional vector space X are all equivalent.

>
)

Proof, part 1. Suppose x1,xs,...,x is a basis of X and let S
denote the unit sphere in R¥. Then the formula

k

g Ciy

=1

f(Cl,CQ,...,Ck) =

defines a continuous function f: S — R. Since S is closed and
bounded in R”, it is also compact. Thus, f attains both a minimum
value o > 0 and a maximum value 5. This gives

k
E iy
=1

for every vector ¢ € R¥ which lies on the unit sphere S.

a <

<p

10/22



(Theorem 3.6 — Equivalence of all norms w

kThe norms of a finite-dimensional vector space X are all equivalent.

Proof, part 2. Suppose now that x # 0 is arbitrary and write

k
r = E diCCZ‘
i=1

for some coefficients dj, da, ..., dg. Then the norm [|d||2 is nonzero
and the vector ¢ = d/||d||2 lies on the unit sphere, so we have

k
E CiZq
i=1

Multiplying by ||d|[2 = |[[|2, we now get al|z||s < [lz]| < f]|z]|;.
Thus, the norm ||x|| is equivalent to the Euclidean norm ||z||2.

a <

<p.
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(Theorem 3.7 — Examples of Banach spaces

k @ Every finite-dimensional vector space X is a Banach space. J

Proof. It suffices to prove completeness. Suppose 1,2, ..., Xy is
a basis of X and let {y,} be a Cauchy sequence in X. Expressing
each y, = Zle Cnix; in terms of the basis, we find that

k
lemi = enil” <> lemi = cnil® = |ym — ynl[3,
=1

so the sequence {c,;} is Cauchy for each i. Let ¢; denote the limit
of this sequence for each 7 and let y = Zle c;x;. Then we have

Hyn yHZ*Z‘Cm_ —0

as n — oo and this implies that ¥,, converges to ¥y, as needed. W



(Theorem 3.7 — Examples of Banach spaces

k @® The sequence space /P is a Banach space for any 1 < p < .

W
)

Proof. We only treat the case 1 < p < oo since the case p = oo is
both similar and easier. Suppose {x,} is a Cauchy sequence in ¢F

and let € > 0. Then there exists an integer N such that

o0
£\P
| Tmi — Tnal? < g [Zmi — Tnil’ = [[Bm — 2al[h < (5)
i—1

for all m,n > N. In particular, the sequence {x,;}°° ; is Cauchy for

each i. Let x; denote its limit. Given any k > 1, we then have

k k

EN\P EN\P
2 ami = anif? < 5) = Xlm-mal<(3)"
1=

i=1

It easily follows that @,, converges to « and that & € /P,
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(Theorem 3.7 — Examples of Banach spaces w

k © The space ¢ is a Banach space with respect to the || - || norm.

Proof. Suppose {x,} is a Cauchy sequence in ¢y. Since ¢y C £,
this sequence must converge to an element & € ¢°°, so we need only
show that the limit « is actually in cg.

Let € > 0 be given. Then there exists an integer N such that
||Xn — @||ooc < e/2 foralln> N.

Since € ¢y, there also exists an integer N’ such that |z x| < /2
for all £ > N’. In particular, one has

lvx] < |zp — k] + |2 K]
< HiIZ — :I)NHOO + |$Nk’ <€

for all k > N’ and this implies that & € ¢, as needed. [ |
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(Theorem 3.7 — Examples of Banach spaces

NN

k O If Y is a Banach space, then L(X,Y) is a Banach space.

Proof. Suppose {T,,} is a Cauchy sequence in L(X,Y) and € > 0.
Then there exists an integer N such that

9
10 (@) = Ton(@)I| < ([T = Tl - ||l < 5 []a]]

for all m,n > N. Thus, the sequence {7, (x)} is also Cauchy. Let
us denote its limit by 7'(x). Then the map x +— T'(x) is linear and

9
1Tn(z) = T(x)]| < S llzll = [[Ta—Tll<e

for all n > N. This implies that 7T,, converges to T as n — oo and
that T — T is bounded, so the operator 7" is bounded as well.
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(Theorem 3.8 — Absolute convergence implies convergence w

Suppose that X is a Banach space and let > | x,, be a series which
converges absolutely in X. Then this series must also converge.

Proof. Let € > 0 be given and consider the partial sums

n n
Snzz$ia tn:ZszH
i=1 =1

Since the sequence {t¢,} converges, it is also Cauchy. In particular,
there exists an integer N such that [¢,, — t,| < ¢ for all m,n > N.
Assuming that m > n > N, we must then have

m m

lsm = snll = || D @il| < D Naill =tm — tn <e.

i=n-+1 i=n+1

Thus, {s,} is Cauchy as well, so it converges by completeness. Wl
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( Theorem 3.9 — Geometric series \
LSuppose that T: X — X is a bounded linear operator on a BanachJ

space X. If ||T'|| <1, then I — T is invertible with inverse > >  T™.

Proof. The series A =73 >° T" is absolutely convergent because

ZHT |I<ZIIT\| —W

Since L(X, X) is a Banach space, the given series is convergent as
well. On the other hand, it is easy to check that

N
(I-7)) 1" =1-T"*",
n=0

while || TV*H1|| < ||T||V+! goes to zero as N — oo. Taking the limit
as N — oo, we may thus conclude that (I — T)A = 1. |
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(Theorem 3.10 — Set of invertible operators w
LSuppose X is a Banach space. Then the set of all invertible boundedJ

linear operators T': X — X is an open subset of L(X, X).

Proof. Let S be the set of all invertible operators T' € L(X, X). To
show that S is open in L(X, X), we let T" € S and we check that

T -T|<e = Te€8
when & = 1/||T~!||. Since the operator A = T—(T —T") has norm
A< IT7H - IT =Tl < IT7Y] e =1,
the previous theorem ensures that I — A is invertible. In particular,
I—A=I-TYT-T) =TT

is invertible, so 7" = T'(I — A) is also invertible and 7" € S. |
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(Theorem 3.11 - Dual of R* w
LThere is a bijective map T': R¥ — (R¥)* that sends each vector a toJ

the bounded linear operator Ty, defined by T, (x) = Zle a; ;.

Proof, part 1. The operator Ty, is linear for each a € R¥. To show
that it is also bounded, we use Holder's inequality to get

k
Ta(@)] <) lai| - |2l < llallz - ||2]]2-
=1

This implies that ||T4|| < ||a||2 for each @ € R. In particular, Tg is
both bounded and linear, so it is an element of the dual (R¥)*.

Consider the map T': R¥ — (R¥)* which is defined by T'(a) = Ty,.
To show it is injective, suppose that T, = T} for some a,b € R”.
Then Ty (e;) = Tp(e;) for each standard unit vector e;, so a; = b;
for each 7. In particular, @ = b and the given map is injective.
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(Theorem 3.11 - Dual of R* w
LThere is a bijective map T': R¥ — (R¥)* that sends each vector a toJ

the bounded linear operator Ty, defined by T, (x) = Zle a; ;.

Proof, part 2. We now show that T is also surjective. Suppose S
is an element of the dual (R¥)* and consider the vector

a=(5(e),S(e2),...,S(er)) € R,

Given any = € R*, we can then write = Zle x;€e; to find that

k k
S(:B) = Z%S(ez) = Zaixi = Ta(a;).
i=1 i=1
This implies that S = T}, so the given map is also surjective. [ |



(Theorem 3.12 — Dual of /P

Suppose 1 < p < oo and let g =p/(p—1). Then 1/p+1/¢ =1 and
there is a bijective map T': ¢ — (¢P)* that sends each sequence {a,}

to the bounded linear operator Ty, defined by To(x) = > 27, a;z;.

Proof, part 1. The proof is very similar to the proof of the previous
theorem. Given any sequences a € ¢4 and x € /P, one has

oo
Ta(@)] <Y lail - 1] < lallg - ]|,
i=1

by Holder's inequality. This implies that T, : /7 — R is a bounded
linear operator, so it is an element of the dual (/£)*. One may thus
define a map T': (7 — (¢P)* by letting T'(a) = T, for each a € (1.
Using the same argument as before, we can easily check that this
map is injective. It remains to check that it is also surjective.



(Theorem 3.12 — Dual of /P

>

Suppose 1 < p < oo and let g =p/(p—1). Then 1/p+1/¢ =1 and
there is a bijective map T': ¢ — (¢P)* that sends each sequence {a,}

to the bounded linear operator Ty, defined by To(x) = > 27, a;z;.

Proof, part 2. Given an element S of the dual (/?)*, one may set

a = (S(e1),S(e2),S(es),...)

and then proceed as before to conclude that S = T,. In this case,
however, we also need to check that a € ¢9. Consider the sequence

b= (bl,bg,...,bn,0,0,...), bi:|ai|q/p_1ai.

A simple computation gives S(b) = Y7, |a;|? = ||b||5 and this also
implies that [|S|| > |S(b)|/|bll, = ||b|[5~". Since the operator S is
bounded, we conclude that b € ¢P and that a € ¢4, as needed. W



