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Theorem 3.1 – Product norm

Suppose X,Y are normed vector spaces. Then one may define a norm

on the product X × Y by letting ||(x,y)|| = ||x||+ ||y||.

Proof. To see that the given formula defines a norm, we note that

||x||+ ||y|| = 0 ⇐⇒ ||x|| = ||y|| = 0.

This implies that ||(x,y)|| = 0 if and only if x = y = 0, while

||(λx, λy)|| = ||λx||+ ||λy|| = |λ| · ||(x,y)||.

Adding the triangle inequalities in X and Y , one also finds that

||(x1,y1) + (x2,y2)|| ≤ ||(x1,y1)||+ ||(x2,y2)||.

In particular, the triangle inequality holds in X × Y as well.
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Theorem 3.2 – Continuity of operations

The following functions are continuous in any normed vector space X.

1 The norm f(x) = ||x||, where x ∈ X.

Proof. Using the triangle inequality, one finds that

||x|| = ||x− y + y|| ≤ ||x− y||+ ||y||,

||y|| = ||y − x+ x|| ≤ ||y − x||+ ||x||

for all x,y ∈ X. Rearranging terms now gives

|f(x)− f(y)| ≤ ||x− y||

and this makes f Lipschitz continuous, hence also continuous.
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Theorem 3.2 – Continuity of operations

The following functions are continuous in any normed vector space X.

2 The vector addition g(x,y) = x+ y, where x,y ∈ X.

Proof. Using the triangle inequality, one finds that

||g(x,y)− g(u,v)|| = ||x+ y − u− v||

≤ ||x− u||+ ||y − v||

= ||(x,y)− (u,v)||.

In particular, g is Lipschitz continuous, hence also continuous.
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Theorem 3.2 – Continuity of operations

The following functions are continuous in any normed vector space X.

3 The scalar multiplication h(λ,x) = λx, where λ ∈ F and x ∈ X.

Proof. To show that h is continuous at the point (λ,x), let ε > 0
be given. Using the triangle inequality, one easily finds that

||h(λ,x)− h(µ,y)|| = ||λx− λy + λy − µy||

≤ |λ| · ||x− y||+ |λ− µ| · ||y||.

Suppose now that ||(λ,x)− (µ,y)|| < δ, where

δ = min

{

ε

2|λ|+ 1
,

ε

2||x||+ 2
, 1

}

.

Then |λ| · ||x− y|| ≤ δ|λ| < ε/2 and ||y|| ≤ δ+ ||x|| ≤ 1+ ||x||, so
one also has ||h(λ,x)− h(µ,y)|| < ε/2 + δ(1 + ||x||) ≤ ε.
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Theorem 3.3 – Bounded means continuous

Suppose X,Y are normed vector spaces and let T : X → Y be linear.

Then T is continuous if and only if T is bounded.

Proof. Suppose first that T is bounded. Then there exists a real

number M > 0 such that ||T (x)|| ≤ M ||x|| for all x ∈ X. Given

any ε > 0, we may thus let δ = ε/M to conclude that

||x− y|| < δ =⇒ ||T (x)− T (y)|| ≤ M ||x− y|| < ε.

Conversely, suppose T is continuous and let δ > 0 be such that

||x− y|| < δ =⇒ ||T (x)− T (y)|| < 1.

Given any nonzero z ∈ X, we note that x = δz
2||z|| satisfies ||x|| < δ.

This gives ||T (x)|| < 1, so ||T (z)|| ≤ 2

δ ||z|| by linearity.
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Theorem 3.4 – Norm of an operator

Suppose X,Y are normed vector spaces. Then the set L(X,Y ) of all
bounded, linear operators T : X → Y is itself a normed vector space.

In fact, one may define a norm on L(X,Y ) by letting

||T || = sup
x 6=0

||T (x)||

||x||
.

Proof, part 1. First, we check that L(X,Y ) is a vector space.

Suppose that T1, T2 ∈ L(X,Y ) and let λ be a scalar. To see that

the operators T1 + T2 and λT1 are both bounded, we note that

||T1(x) + T2(x)|| ≤ ||T1(x)||+ ||T2(x)|| ≤ C1||x||+ C2||x||,

||λT1(x)|| = |λ| · ||T1(x)|| ≤ |λ|C1||x||.

Since T1 + T2 and λT1 are also linear, they are both in L(X,Y ).
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Theorem 3.4 – Norm of an operator

Suppose X,Y are normed vector spaces. Then the set L(X,Y ) of all
bounded, linear operators T : X → Y is itself a normed vector space.

In fact, one may define a norm on L(X,Y ) by letting

||T || = sup
x 6=0

||T (x)||

||x||
.

Proof, part 2. We check that the given formula defines a norm.

When ||T || = 0, we have ||T (x)|| = 0 for all x ∈ X and this implies

that T is the zero operator. Since ||λT (x)|| = |λ| · ||T (x)|| for any
scalar λ, it easily follows that ||λT || = |λ| · ||T ||. Thus, it remains to

prove the triangle inequality for the operator norm. Since

||S(x) + T (x)|| ≤ ||S(x)||+ ||T (x)|| ≤ ||S|| · ||x||+ ||T || · ||x||

for all x 6= 0, we find that ||S + T || ≤ ||S||+ ||T ||, as needed.
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Theorem 3.5 – Euclidean norm

Suppose that X is a vector space with basis x1,x2, . . . ,xk. Then one

may define a norm on X using the formula

x =
k

∑

i=1

cixi =⇒ ||x||2 =

√

√

√

√

k
∑

i=1

|ci|2.

This norm is also known as the Euclidean or standard norm on X.

Proof. By definition, one has ||x||2 = ||c||2. This is a norm on R
k,

so one may easily check that it is also a norm on X. For instance,

||x||2 = 0 ⇐⇒ ||c||2 = 0 ⇐⇒ c = 0

⇐⇒ x = 0.

This proves the first property that a norm needs to satisfy, while the

other two properties can be checked in a similar manner.
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Theorem 3.6 – Equivalence of all norms

The norms of a finite-dimensional vector space X are all equivalent.

Proof, part 1. Suppose x1,x2, . . . ,xk is a basis of X and let S
denote the unit sphere in R

k. Then the formula

f(c1, c2, . . . , ck) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k
∑

i=1

cixi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

defines a continuous function f : S → R. Since S is closed and

bounded in R
k, it is also compact. Thus, f attains both a minimum

value α > 0 and a maximum value β. This gives

α ≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k
∑

i=1

cixi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ β

for every vector c ∈ R
k which lies on the unit sphere S.
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Theorem 3.6 – Equivalence of all norms

The norms of a finite-dimensional vector space X are all equivalent.

Proof, part 2. Suppose now that x 6= 0 is arbitrary and write

x =
k

∑

i=1

dixi

for some coefficients d1, d2, . . . , dk. Then the norm ||d||2 is nonzero

and the vector c = d/||d||2 lies on the unit sphere, so we have

α ≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k
∑

i=1

cixi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ β.

Multiplying by ||d||2 = ||x||2, we now get α||x||2 ≤ ||x|| ≤ β||x||2.
Thus, the norm ||x|| is equivalent to the Euclidean norm ||x||2.
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Theorem 3.7 – Examples of Banach spaces

1 Every finite-dimensional vector space X is a Banach space.

Proof. It suffices to prove completeness. Suppose x1,x2, . . . ,xk is

a basis of X and let {yn} be a Cauchy sequence in X. Expressing

each yn =
∑k

i=1
cnixi in terms of the basis, we find that

|cmi − cni|
2 ≤

k
∑

i=1

|cmi − cni|
2 = ||ym − yn||

2
2,

so the sequence {cni} is Cauchy for each i. Let ci denote the limit

of this sequence for each i and let y =
∑k

i=1
cixi. Then we have

||yn − y||22 =

k
∑

i=1

|cni − ci|
2 −→ 0

as n → ∞ and this implies that yn converges to y, as needed.
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Theorem 3.7 – Examples of Banach spaces

2 The sequence space ℓp is a Banach space for any 1 ≤ p ≤ ∞.

Proof. We only treat the case 1 ≤ p < ∞ since the case p = ∞ is

both similar and easier. Suppose {xn} is a Cauchy sequence in ℓp

and let ε > 0. Then there exists an integer N such that

|xmi − xni|
p ≤

∞
∑

i=1

|xmi − xni|
p = ||xm − xn||

p
p <

(ε

2

)p

for all m,n ≥ N . In particular, the sequence {xni}
∞
n=1 is Cauchy for

each i. Let xi denote its limit. Given any k ≥ 1, we then have

k
∑

i=1

|xmi − xni|
p <

(ε

2

)p
=⇒

k
∑

i=1

|xi − xni|
p ≤

(ε

2

)p
.

It easily follows that xn converges to x and that x ∈ ℓp.
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Theorem 3.7 – Examples of Banach spaces

3 The space c0 is a Banach space with respect to the || · ||∞ norm.

Proof. Suppose {xn} is a Cauchy sequence in c0. Since c0 ⊂ ℓ∞,

this sequence must converge to an element x ∈ ℓ∞, so we need only

show that the limit x is actually in c0.

Let ε > 0 be given. Then there exists an integer N such that

||xn − x||∞ < ε/2 for all n ≥ N.

Since xN ∈ c0, there also exists an integer N ′ such that |xNk| < ε/2
for all k ≥ N ′. In particular, one has

|xk| ≤ |xk − xNk|+ |xNk|

≤ ||x− xN ||∞ + |xNk| < ε

for all k ≥ N ′ and this implies that x ∈ c0, as needed.
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Theorem 3.7 – Examples of Banach spaces

4 If Y is a Banach space, then L(X,Y ) is a Banach space.

Proof. Suppose {Tn} is a Cauchy sequence in L(X,Y ) and ε > 0.
Then there exists an integer N such that

||Tn(x)− Tm(x)|| ≤ ||Tn − Tm|| · ||x|| ≤
ε

2
||x||

for all m,n ≥ N . Thus, the sequence {Tn(x)} is also Cauchy. Let

us denote its limit by T (x). Then the map x 7→ T (x) is linear and

||Tn(x)− T (x)|| ≤
ε

2
||x|| =⇒ ||Tn − T || < ε

for all n ≥ N . This implies that Tn converges to T as n → ∞ and

that TN − T is bounded, so the operator T is bounded as well.
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Theorem 3.8 – Absolute convergence implies convergence

Suppose that X is a Banach space and let
∑∞

n=1
xn be a series which

converges absolutely in X. Then this series must also converge.

Proof. Let ε > 0 be given and consider the partial sums

sn =
n
∑

i=1

xi, tn =
n
∑

i=1

||xi||.

Since the sequence {tn} converges, it is also Cauchy. In particular,

there exists an integer N such that |tm − tn| < ε for all m,n ≥ N .

Assuming that m > n ≥ N , we must then have

||sm − sn|| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

i=n+1

xi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
m
∑

i=n+1

||xi|| = tm − tn < ε.

Thus, {sn} is Cauchy as well, so it converges by completeness.
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Theorem 3.9 – Geometric series

Suppose that T : X → X is a bounded linear operator on a Banach

space X. If ||T || < 1, then I − T is invertible with inverse
∑∞

n=0
Tn.

Proof. The series A =
∑∞

n=0
Tn is absolutely convergent because

∞
∑

n=0

||Tn|| ≤
∞
∑

n=0

||T ||n =
1

1− ||T ||
.

Since L(X,X) is a Banach space, the given series is convergent as

well. On the other hand, it is easy to check that

(I − T )
N
∑

n=0

Tn = I − TN+1,

while ||TN+1|| ≤ ||T ||N+1 goes to zero as N → ∞. Taking the limit

as N → ∞, we may thus conclude that (I − T )A = I.
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Theorem 3.10 – Set of invertible operators

Suppose X is a Banach space. Then the set of all invertible bounded

linear operators T : X → X is an open subset of L(X,X).

Proof. Let S be the set of all invertible operators T ∈ L(X,X). To
show that S is open in L(X,X), we let T ∈ S and we check that

||T − T ′|| < ε =⇒ T ′ ∈ S

when ε = 1/||T−1||. Since the operator A = T−1(T − T ′) has norm

||A|| ≤ ||T−1|| · ||T − T ′|| < ||T−1|| · ε = 1,

the previous theorem ensures that I −A is invertible. In particular,

I −A = I − T−1(T − T ′) = T−1T ′

is invertible, so T ′ = T (I −A) is also invertible and T ′ ∈ S.
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Theorem 3.11 – Dual of Rk

There is a bijective map T : Rk → (Rk)∗ that sends each vector a to

the bounded linear operator Ta defined by Ta(x) =
∑k

i=1
aixi.

Proof, part 1. The operator Ta is linear for each a ∈ R
k. To show

that it is also bounded, we use Hölder’s inequality to get

|Ta(x)| ≤
k

∑

i=1

|ai| · |xi| ≤ ||a||2 · ||x||2.

This implies that ||Ta|| ≤ ||a||2 for each a ∈ R. In particular, Ta is

both bounded and linear, so it is an element of the dual (Rk)∗.

Consider the map T : Rk → (Rk)∗ which is defined by T (a) = Ta.

To show it is injective, suppose that Ta = Tb for some a, b ∈ R
k.

Then Ta(ei) = Tb(ei) for each standard unit vector ei, so ai = bi
for each i. In particular, a = b and the given map is injective.
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Theorem 3.11 – Dual of Rk

There is a bijective map T : Rk → (Rk)∗ that sends each vector a to

the bounded linear operator Ta defined by Ta(x) =
∑k

i=1
aixi.

Proof, part 2. We now show that T is also surjective. Suppose S
is an element of the dual (Rk)∗ and consider the vector

a =
(

S(e1), S(e2), . . . , S(ek)
)

∈ R
k.

Given any x ∈ R
k, we can then write x =

∑k
i=1

xiei to find that

S(x) =
k

∑

i=1

xiS(ei) =
k

∑

i=1

aixi = Ta(x).

This implies that S = Ta, so the given map is also surjective.
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Theorem 3.12 – Dual of ℓp

Suppose 1 < p < ∞ and let q = p/(p− 1). Then 1/p+ 1/q = 1 and

there is a bijective map T : ℓq → (ℓp)∗ that sends each sequence {an}
to the bounded linear operator Ta defined by Ta(x) =

∑∞
i=1

aixi.

Proof, part 1. The proof is very similar to the proof of the previous

theorem. Given any sequences a ∈ ℓq and x ∈ ℓp, one has

|Ta(x)| ≤
∞
∑

i=1

|ai| · |xi| ≤ ||a||q · ||x||p

by Hölder’s inequality. This implies that Ta : ℓ
p → R is a bounded

linear operator, so it is an element of the dual (ℓp)∗. One may thus

define a map T : ℓq → (ℓp)∗ by letting T (a) = Ta for each a ∈ ℓq.
Using the same argument as before, we can easily check that this

map is injective. It remains to check that it is also surjective.
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Theorem 3.12 – Dual of ℓp

Suppose 1 < p < ∞ and let q = p/(p− 1). Then 1/p+ 1/q = 1 and

there is a bijective map T : ℓq → (ℓp)∗ that sends each sequence {an}
to the bounded linear operator Ta defined by Ta(x) =

∑∞
i=1

aixi.

Proof, part 2. Given an element S of the dual (ℓp)∗, one may set

a =
(

S(e1), S(e2), S(e3), . . .
)

and then proceed as before to conclude that S = Ta. In this case,

however, we also need to check that a ∈ ℓq. Consider the sequence

b =
(

b1, b2, . . . , bn, 0, 0, . . .
)

, bi = |ai|
q/p−1ai.

A simple computation gives S(b) =
∑n

i=1
|ai|

q = ||b||pp and this also

implies that ||S|| ≥ |S(b)|/||b||p = ||b||p−1
p . Since the operator S is

bounded, we conclude that b ∈ ℓp and that a ∈ ℓq, as needed.
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