Chapter 3. Normed vector spaces Proofs covered in class

P. Karageorgis

pete@maths.tcd.ie

Theorem 3.1 – Product norm

Suppose X, Y are normed vector spaces. Then one may define a norm on the product $X \times Y$ by letting $||(\boldsymbol{x}, \boldsymbol{y})|| = ||\boldsymbol{x}|| + ||\boldsymbol{y}||$.

Proof. To see that the given formula defines a norm, we note that

$$||\boldsymbol{x}|| + ||\boldsymbol{y}|| = 0 \quad \iff \quad ||\boldsymbol{x}|| = ||\boldsymbol{y}|| = 0.$$

This implies that $||(\boldsymbol{x}, \boldsymbol{y})|| = 0$ if and only if $\boldsymbol{x} = \boldsymbol{y} = 0$, while

$$||(\lambda \boldsymbol{x},\lambda \boldsymbol{y})|| = ||\lambda \boldsymbol{x}|| + ||\lambda \boldsymbol{y}|| = |\lambda| \cdot ||(\boldsymbol{x},\boldsymbol{y})||.$$

Adding the triangle inequalities in X and Y, one also finds that

$$||(\boldsymbol{x}_1, \boldsymbol{y}_1) + (\boldsymbol{x}_2, \boldsymbol{y}_2)|| \le ||(\boldsymbol{x}_1, \boldsymbol{y}_1)|| + ||(\boldsymbol{x}_2, \boldsymbol{y}_2)||.$$

In particular, the triangle inequality holds in $X \times Y$ as well.

Theorem 3.2 – Continuity of operations

The following functions are continuous in any normed vector space X. 1 The norm f(x) = ||x||, where $x \in X$.

Proof. Using the triangle inequality, one finds that

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||,$$

 $||y|| = ||y - x + x|| \le ||y - x|| + ||x||$

for all $\boldsymbol{x}, \boldsymbol{y} \in X$. Rearranging terms now gives

$$|f(\boldsymbol{x}) - f(\boldsymbol{y})| \le ||\boldsymbol{x} - \boldsymbol{y}||$$

and this makes f Lipschitz continuous, hence also continuous.

Theorem 3.2 – Continuity of operations

The following functions are continuous in any normed vector space X. 2 The vector addition g(x, y) = x + y, where $x, y \in X$.

Proof. Using the triangle inequality, one finds that

$$egin{aligned} ||g(m{x},m{y}) - g(m{u},m{v})|| &= ||m{x} + m{y} - m{u} - m{v}|| \ &\leq ||m{x} - m{u}|| + ||m{y} - m{v}|| \ &= ||(m{x},m{y}) - (m{u},m{v})||. \end{aligned}$$

In particular, g is Lipschitz continuous, hence also continuous.

Theorem 3.2 – Continuity of operations

The following functions are continuous in any normed vector space X. 3 The scalar multiplication $h(\lambda, x) = \lambda x$, where $\lambda \in \mathbb{F}$ and $x \in X$.

Proof. To show that h is continuous at the point (λ, x) , let $\varepsilon > 0$ be given. Using the triangle inequality, one easily finds that

$$egin{aligned} ||h(\lambda,oldsymbol{x})-h(\mu,oldsymbol{y})|| &= ||\lambdaoldsymbol{x}-\lambdaoldsymbol{y}+\lambdaoldsymbol{y}-\muoldsymbol{y}|| \ &\leq |\lambda|\cdot||oldsymbol{x}-oldsymbol{y}||+|\lambda-\mu|\cdot||oldsymbol{y}||. \end{aligned}$$

Suppose now that $||(\lambda, {m x}) - (\mu, {m y})|| < \delta$, where

$$\delta = \min\left\{\frac{\varepsilon}{2|\lambda|+1}, \frac{\varepsilon}{2||\boldsymbol{x}||+2}, 1\right\}.$$

Then $|\lambda| \cdot ||\boldsymbol{x} - \boldsymbol{y}|| \le \delta |\lambda| < \varepsilon/2$ and $||\boldsymbol{y}|| \le \delta + ||\boldsymbol{x}|| \le 1 + ||\boldsymbol{x}||$, so one also has $||h(\lambda, \boldsymbol{x}) - h(\mu, \boldsymbol{y})|| < \varepsilon/2 + \delta(1 + ||\boldsymbol{x}||) \le \varepsilon$.

Theorem 3.3 – Bounded means continuous

Suppose X, Y are normed vector spaces and let $T: X \to Y$ be linear. Then T is continuous if and only if T is bounded.

Proof. Suppose first that T is bounded. Then there exists a real number M > 0 such that $||T(\boldsymbol{x})|| \leq M ||\boldsymbol{x}||$ for all $\boldsymbol{x} \in X$. Given any $\varepsilon > 0$, we may thus let $\delta = \varepsilon/M$ to conclude that

$$||\boldsymbol{x} - \boldsymbol{y}|| < \delta \implies ||T(\boldsymbol{x}) - T(\boldsymbol{y})|| \le M ||\boldsymbol{x} - \boldsymbol{y}|| < \varepsilon.$$

Conversely, suppose T is continuous and let $\delta>0$ be such that

$$||\boldsymbol{x} - \boldsymbol{y}|| < \delta \implies ||T(\boldsymbol{x}) - T(\boldsymbol{y})|| < 1.$$

Given any nonzero $z \in X$, we note that $x = \frac{\delta z}{2||z||}$ satisfies $||x|| < \delta$. This gives ||T(x)|| < 1, so $||T(z)|| \le \frac{2}{\delta}||z||$ by linearity.

Theorem 3.4 – Norm of an operator

Suppose X, Y are normed vector spaces. Then the set L(X, Y) of all bounded, linear operators $T: X \to Y$ is itself a normed vector space. In fact, one may define a norm on L(X, Y) by letting

$$||T|| = \sup_{x \neq 0} \frac{||T(x)||}{||x||}$$

Proof, part 1. First, we check that L(X, Y) is a vector space. Suppose that $T_1, T_2 \in L(X, Y)$ and let λ be a scalar. To see that the operators $T_1 + T_2$ and λT_1 are both bounded, we note that

$$\begin{split} ||T_1(m{x}) + T_2(m{x})|| &\leq ||T_1(m{x})|| + ||T_2(m{x})|| \leq C_1 ||m{x}|| + C_2 ||m{x}||, \ ||\lambda T_1(m{x})|| &= |\lambda| \cdot ||T_1(m{x})|| \leq |\lambda| C_1 ||m{x}||. \end{split}$$

Since $T_1 + T_2$ and λT_1 are also linear, they are both in L(X, Y).

Theorem 3.4 – Norm of an operator

Suppose X, Y are normed vector spaces. Then the set L(X, Y) of all bounded, linear operators $T: X \to Y$ is itself a normed vector space. In fact, one may define a norm on L(X, Y) by letting

$$|T|| = \sup_{x \neq 0} \frac{||T(x)||}{||x||}$$

Proof, part 2. We check that the given formula defines a norm. When ||T|| = 0, we have ||T(x)|| = 0 for all $x \in X$ and this implies that T is the zero operator. Since $||\lambda T(x)|| = |\lambda| \cdot ||T(x)||$ for any scalar λ , it easily follows that $||\lambda T|| = |\lambda| \cdot ||T||$. Thus, it remains to prove the triangle inequality for the operator norm. Since

$$||S(\boldsymbol{x}) + T(\boldsymbol{x})|| \le ||S(\boldsymbol{x})|| + ||T(\boldsymbol{x})|| \le ||S|| \cdot ||\boldsymbol{x}|| + ||T|| \cdot ||\boldsymbol{x}||$$

for all $x \neq 0$, we find that $||S + T|| \leq ||S|| + ||T||$, as needed.

Theorem 3.5 – Euclidean norm

Suppose that X is a vector space with basis x_1, x_2, \ldots, x_k . Then one may define a norm on X using the formula

$$oldsymbol{x} = \sum_{i=1}^k c_i oldsymbol{x}_i \quad \Longrightarrow \quad ||oldsymbol{x}||_2 = \sqrt{\sum_{i=1}^k |c_i|^2}.$$

This norm is also known as the Euclidean or standard norm on X.

Proof. By definition, one has $||\mathbf{x}||_2 = ||\mathbf{c}||_2$. This is a norm on \mathbb{R}^k , so one may easily check that it is also a norm on X. For instance,

$$||\boldsymbol{x}||_2 = 0 \quad \Longleftrightarrow \quad ||\boldsymbol{c}||_2 = 0 \quad \Longleftrightarrow \quad \boldsymbol{c} = 0$$
$$\iff \quad \boldsymbol{x} = 0.$$

This proves the first property that a norm needs to satisfy, while the other two properties can be checked in a similar manner.

Theorem 3.6 – Equivalence of all norms

The norms of a finite-dimensional vector space X are all equivalent.

Proof, part 1. Suppose x_1, x_2, \ldots, x_k is a basis of X and let S denote the unit sphere in \mathbb{R}^k . Then the formula

$$f(c_1, c_2, \dots, c_k) = \left| \left| \sum_{i=1}^k c_i \boldsymbol{x}_i \right| \right|$$

defines a continuous function $f: S \to \mathbb{R}$. Since S is closed and bounded in \mathbb{R}^k , it is also compact. Thus, f attains both a minimum value $\alpha > 0$ and a maximum value β . This gives

$$\alpha \le \left\| \sum_{i=1}^k c_i \boldsymbol{x}_i \right\| \le \beta$$

for every vector $c \in \mathbb{R}^k$ which lies on the unit sphere S.

Theorem 3.6 – Equivalence of all norms

The norms of a finite-dimensional vector space X are all equivalent.

Proof, part 2. Suppose now that $x \neq 0$ is arbitrary and write

$$oldsymbol{x} = \sum_{i=1}^k d_i oldsymbol{x}_i$$

for some coefficients d_1, d_2, \ldots, d_k . Then the norm $||d||_2$ is nonzero and the vector $c = d/||d||_2$ lies on the unit sphere, so we have

$$\alpha \le \left\| \sum_{i=1}^k c_i \boldsymbol{x}_i \right\| \le \beta.$$

Multiplying by $||d||_2 = ||x||_2$, we now get $\alpha ||x||_2 \le ||x|| \le \beta ||x||_2$. Thus, the norm ||x|| is equivalent to the Euclidean norm $||x||_2$.

1 Every finite-dimensional vector space X is a Banach space.

Proof. It suffices to prove completeness. Suppose x_1, x_2, \ldots, x_k is a basis of X and let $\{y_n\}$ be a Cauchy sequence in X. Expressing each $y_n = \sum_{i=1}^k c_{ni}x_i$ in terms of the basis, we find that

$$|c_{mi} - c_{ni}|^2 \le \sum_{i=1}^k |c_{mi} - c_{ni}|^2 = ||\boldsymbol{y}_m - \boldsymbol{y}_n||_2^2,$$

so the sequence $\{c_{ni}\}$ is Cauchy for each *i*. Let c_i denote the limit of this sequence for each *i* and let $y = \sum_{i=1}^{k} c_i x_i$. Then we have

$$||\boldsymbol{y}_n - \boldsymbol{y}||_2^2 = \sum_{i=1}^k |c_{ni} - c_i|^2 \longrightarrow 0$$

as $n \to \infty$ and this implies that \boldsymbol{y}_n converges to \boldsymbol{y} , as needed.

2 The sequence space ℓ^p is a Banach space for any $1 \le p \le \infty$.

Proof. We only treat the case $1 \le p < \infty$ since the case $p = \infty$ is both similar and easier. Suppose $\{x_n\}$ is a Cauchy sequence in ℓ^p and let $\varepsilon > 0$. Then there exists an integer N such that

$$|x_{mi} - x_{ni}|^p \le \sum_{i=1}^{\infty} |x_{mi} - x_{ni}|^p = ||\boldsymbol{x}_m - \boldsymbol{x}_n||_p^p < \left(\frac{\varepsilon}{2}\right)^p$$

for all $m, n \ge N$. In particular, the sequence $\{x_{ni}\}_{n=1}^{\infty}$ is Cauchy for each *i*. Let x_i denote its limit. Given any $k \ge 1$, we then have

$$\sum_{i=1}^{k} |x_{mi} - x_{ni}|^p < \left(\frac{\varepsilon}{2}\right)^p \implies \sum_{i=1}^{k} |x_i - x_{ni}|^p \le \left(\frac{\varepsilon}{2}\right)^p.$$

It easily follows that x_n converges to x and that $x \in \ell^p$.

 $\mathbf{3}$ The space c_0 is a Banach space with respect to the $|| \cdot ||_{\infty}$ norm.

Proof. Suppose $\{x_n\}$ is a Cauchy sequence in c_0 . Since $c_0 \subset \ell^{\infty}$, this sequence must converge to an element $x \in \ell^{\infty}$, so we need only show that the limit x is actually in c_0 .

Let $\varepsilon > 0$ be given. Then there exists an integer N such that

$$||\boldsymbol{x}_n - \boldsymbol{x}||_{\infty} < \varepsilon/2$$
 for all $n \ge N$.

Since $x_N \in c_0$, there also exists an integer N' such that $|x_{Nk}| < \varepsilon/2$ for all $k \ge N'$. In particular, one has

$$egin{aligned} x_k &| \leq |x_k - x_{Nk}| + |x_{Nk}| \ &\leq ||m{x} - m{x}_N||_\infty + |x_{Nk}| < arepsilon \end{aligned}$$

for all $k \ge N'$ and this implies that $x \in c_0$, as needed.

4 If Y is a Banach space, then L(X, Y) is a Banach space.

Proof. Suppose $\{T_n\}$ is a Cauchy sequence in L(X, Y) and $\varepsilon > 0$. Then there exists an integer N such that

$$||T_n(\boldsymbol{x}) - T_m(\boldsymbol{x})|| \le ||T_n - T_m|| \cdot ||\boldsymbol{x}|| \le \frac{\varepsilon}{2} ||\boldsymbol{x}||$$

for all $m, n \ge N$. Thus, the sequence $\{T_n(x)\}$ is also Cauchy. Let us denote its limit by T(x). Then the map $x \mapsto T(x)$ is linear and

$$||T_n(\boldsymbol{x}) - T(\boldsymbol{x})|| \le \frac{\varepsilon}{2} ||\boldsymbol{x}|| \implies ||T_n - T|| < \varepsilon$$

for all $n \ge N$. This implies that T_n converges to T as $n \to \infty$ and that $T_N - T$ is bounded, so the operator T is bounded as well.

Theorem 3.8 – Absolute convergence implies convergence

Suppose that X is a Banach space and let $\sum_{n=1}^{\infty} x_n$ be a series which converges absolutely in X. Then this series must also converge.

Proof. Let $\varepsilon > 0$ be given and consider the partial sums

$$s_n = \sum_{i=1}^n \boldsymbol{x}_i, \qquad t_n = \sum_{i=1}^n ||\boldsymbol{x}_i||.$$

Since the sequence $\{t_n\}$ converges, it is also Cauchy. In particular, there exists an integer N such that $|t_m - t_n| < \varepsilon$ for all $m, n \ge N$. Assuming that $m > n \ge N$, we must then have

$$||s_m - s_n|| = \left|\left|\sum_{i=n+1}^m \boldsymbol{x}_i\right|\right| \le \sum_{i=n+1}^m ||\boldsymbol{x}_i|| = t_m - t_n < \varepsilon.$$

Thus, $\{s_n\}$ is Cauchy as well, so it converges by completeness.

Theorem 3.9 – Geometric series

Suppose that $T: X \to X$ is a bounded linear operator on a Banach space X. If ||T|| < 1, then I - T is invertible with inverse $\sum_{n=0}^{\infty} T^n$.

Proof. The series $A = \sum_{n=0}^{\infty} T^n$ is absolutely convergent because

$$\sum_{n=0}^{\infty} ||T^n|| \le \sum_{n=0}^{\infty} ||T||^n = \frac{1}{1 - ||T||}.$$

Since L(X, X) is a Banach space, the given series is convergent as well. On the other hand, it is easy to check that

$$(I-T)\sum_{n=0}^{N}T^{n} = I - T^{N+1},$$

while $||T^{N+1}|| \le ||T||^{N+1}$ goes to zero as $N \to \infty$. Taking the limit as $N \to \infty$, we may thus conclude that (I - T)A = I.

Theorem 3.10 – Set of invertible operators

Suppose X is a Banach space. Then the set of all invertible bounded linear operators $T: X \to X$ is an open subset of L(X, X).

Proof. Let S be the set of all invertible operators $T \in L(X, X)$. To show that S is open in L(X, X), we let $T \in S$ and we check that

$$||T - T'|| < \varepsilon \implies T' \in S$$

when $\varepsilon = 1/||T^{-1}||$. Since the operator $A = T^{-1}(T - T')$ has norm $||A|| \le ||T^{-1}|| \cdot ||T - T'|| < ||T^{-1}|| \cdot \varepsilon = 1,$

the previous theorem ensures that I - A is invertible. In particular,

$$I - A = I - T^{-1}(T - T') = T^{-1}T'$$

is invertible, so T' = T(I - A) is also invertible and $T' \in S$.

Theorem 3.11 – Dual of \mathbb{R}^k

There is a bijective map $T \colon \mathbb{R}^k \to (\mathbb{R}^k)^*$ that sends each vector \boldsymbol{a} to the bounded linear operator $T_{\boldsymbol{a}}$ defined by $T_{\boldsymbol{a}}(\boldsymbol{x}) = \sum_{i=1}^k a_i x_i$.

Proof, part 1. The operator T_a is linear for each $a \in \mathbb{R}^k$. To show that it is also bounded, we use Hölder's inequality to get

$$|T_{\boldsymbol{a}}(\boldsymbol{x})| \le \sum_{i=1}^{k} |a_i| \cdot |x_i| \le ||\boldsymbol{a}||_2 \cdot ||\boldsymbol{x}||_2.$$

This implies that $||T_a|| \le ||a||_2$ for each $a \in \mathbb{R}$. In particular, T_a is both bounded and linear, so it is an element of the dual $(\mathbb{R}^k)^*$.

Consider the map $T: \mathbb{R}^k \to (\mathbb{R}^k)^*$ which is defined by $T(a) = T_a$. To show it is injective, suppose that $T_a = T_b$ for some $a, b \in \mathbb{R}^k$. Then $T_a(e_i) = T_b(e_i)$ for each standard unit vector e_i , so $a_i = b_i$ for each *i*. In particular, a = b and the given map is injective.

Theorem 3.11 – Dual of \mathbb{R}^k

There is a bijective map $T \colon \mathbb{R}^k \to (\mathbb{R}^k)^*$ that sends each vector \boldsymbol{a} to the bounded linear operator $T_{\boldsymbol{a}}$ defined by $T_{\boldsymbol{a}}(\boldsymbol{x}) = \sum_{i=1}^k a_i x_i$.

Proof, part 2. We now show that T is also surjective. Suppose S is an element of the dual $(\mathbb{R}^k)^*$ and consider the vector

$$\boldsymbol{a} = ig(S(\boldsymbol{e}_1), S(\boldsymbol{e}_2), \dots, S(\boldsymbol{e}_k)ig) \in \mathbb{R}^k.$$

Given any $oldsymbol{x} \in \mathbb{R}^k$, we can then write $oldsymbol{x} = \sum_{i=1}^k x_i oldsymbol{e}_i$ to find that

$$S(\boldsymbol{x}) = \sum_{i=1}^{k} x_i S(\boldsymbol{e}_i) = \sum_{i=1}^{k} a_i x_i = T_{\boldsymbol{a}}(\boldsymbol{x}).$$

This implies that $S = T_a$, so the given map is also surjective.

Theorem 3.12 – Dual of ℓ^p

Suppose 1 and let <math>q = p/(p-1). Then 1/p + 1/q = 1 and there is a bijective map $T: \ell^q \to (\ell^p)^*$ that sends each sequence $\{a_n\}$ to the bounded linear operator T_a defined by $T_a(x) = \sum_{i=1}^{\infty} a_i x_i$.

Proof, part 1. The proof is very similar to the proof of the previous theorem. Given any sequences $a \in \ell^q$ and $x \in \ell^p$, one has

$$|T_{\boldsymbol{a}}(\boldsymbol{x})| \leq \sum_{i=1}^{\infty} |a_i| \cdot |x_i| \leq ||\boldsymbol{a}||_q \cdot ||\boldsymbol{x}||_p$$

by Hölder's inequality. This implies that $T_a \colon \ell^p \to \mathbb{R}$ is a bounded linear operator, so it is an element of the dual $(\ell^p)^*$. One may thus define a map $T \colon \ell^q \to (\ell^p)^*$ by letting $T(a) = T_a$ for each $a \in \ell^q$. Using the same argument as before, we can easily check that this map is injective. It remains to check that it is also surjective.

Theorem 3.12 – Dual of ℓ^p

Suppose 1 and let <math>q = p/(p-1). Then 1/p + 1/q = 1 and there is a bijective map $T: \ell^q \to (\ell^p)^*$ that sends each sequence $\{a_n\}$ to the bounded linear operator T_a defined by $T_a(x) = \sum_{i=1}^{\infty} a_i x_i$.

Proof, part 2. Given an element S of the dual $(\ell^p)^*$, one may set

$$\boldsymbol{a} = (S(\boldsymbol{e}_1), S(\boldsymbol{e}_2), S(\boldsymbol{e}_3), \ldots)$$

and then proceed as before to conclude that $S = T_a$. In this case, however, we also need to check that $a \in \ell^q$. Consider the sequence

$$\boldsymbol{b} = (b_1, b_2, \dots, b_n, 0, 0, \dots), \qquad b_i = |a_i|^{q/p-1} a_i$$

A simple computation gives $S(\mathbf{b}) = \sum_{i=1}^{n} |a_i|^q = ||\mathbf{b}||_p^p$ and this also implies that $||S|| \ge |S(\mathbf{b})|/||\mathbf{b}||_p = ||\mathbf{b}||_p^{p-1}$. Since the operator S is bounded, we conclude that $\mathbf{b} \in \ell^p$ and that $\mathbf{a} \in \ell^q$, as needed.