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Theorem 2.1 – Limits are not necessarily unique

Suppose that X has the indiscrete topology and let x ∈ X. Then the
constant sequence xn = x converges to y for every y ∈ X.

Proof. Suppose U is an open set that contains y. Since X has the
indiscrete topology, the only open sets are ∅ and X, so U must be
equal to X. This implies that xn ∈ U for all n ≥ 1. In view of the
definition of convergence, we thus have xn → y as n→∞.
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Theorem 2.2 – Main facts about closed sets

1 If a subset A ⊂ X is closed in X, then every sequence of points
of A that converges must converge to a point of A.

2 Both ∅ and X are closed in X.

Proof. First, we prove 1 . Suppose {xn} is a convergent sequence
of points of A and let x denote its limit. To show that x ∈ A, we
assume x ∈ X −A for the sake of contradiction. Then X −A is an
open set which contains the limit x, so there is an integer N such
that xn ∈ X − A for all n ≥ N . This contradicts our assumption
that xn ∈ A for all n ≥ 1. Thus, we must have x ∈ A.

Next, we turn to 2 . By definition, the sets ∅, X are both open
in X, so their complements X,∅ are both closed in X.

3 / 45



Theorem 2.2 – Main facts about closed sets

3 Finite unions of closed sets are closed.

4 Arbitrary intersections of closed sets are closed.

Proof. We prove these statements using De Morgan’s laws

X −
n⋃

i=1

Ui =

n⋂
i=1

(X − Ui), X −
⋂
i

Ui =
⋃
i

(X − Ui).

To prove 3 , suppose that the sets Ui are closed in X. Then their
complements X − Ui are open in X and these are finitely many, so
their intersection is open in X. Using the first De Morgan’s law, we
conclude that the union of the sets Ui is closed in X.

The proof of 4 is similar. If the sets Ui are closed in X, then their
complements X −Ui are open in X and so is their union. Using the
second De Morgan’s law, we conclude that

⋂
Ui is closed in X.
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Theorem 2.3 – Main facts about the closure

1 One has A ⊂ A for any set A.

2 If A ⊂ B, then A ⊂ B as well.

3 The set A is closed if and only if A = A.

4 The closure of A is itself, namely A = A.

Proof. By definition, A is the smallest closed set that contains A,
so 1 is clear. To prove 2 , suppose A ⊂ B. Then A ⊂ B ⊂ B and
so B is a closed set that contains A. Since A is the smallest such
closed set by definition, we conclude that A ⊂ B.

Part 3 should be clear because A is the smallest closed set that
contains A. In particular, A is equal to A if and only if A is closed.
Finally, part 4 is a direct consequence of part 3 . Since A is a closed
set by definition, it must be equal to its own closure.
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Theorem 2.4 – Main facts about the interior

1 One has A◦ ⊂ A for any set A.

2 If A ⊂ B, then A◦ ⊂ B◦ as well.

3 The set A is open if and only if A◦ = A.

4 The interior of A◦ is itself, namely (A◦)◦ = A◦.

Proof. By definition, A◦ is the largest open set contained in A, so
part 1 is clear. To prove 2 , suppose A ⊂ B. Then A◦ ⊂ A ⊂ B
and this makes A◦ an open set which is contained in B. Since B◦ is
the largest such open set by definition, we conclude that A◦ ⊂ B◦.

Part 3 should be clear since A◦ is the largest open set contained
in A. In particular, A◦ is equal to A if and only if A is open. Finally,
part 4 is a direct consequence of part 3 . Since A◦ is an open set
by definition, it must be equal to its own interior.
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Theorem 2.5 – Characterisation of closure/interior/boundary

Suppose (X,T ) is a topological space and let A ⊂ X.

1 x ∈ A ⇐⇒ every neighbourhood of x intersects A.

Proof. By definition, the closure A is the intersection of all closed
sets that contain A. In other words, we have

x /∈ A ⇐⇒ x /∈ C for some closed set C that contains A.

Setting U = X − C for convenience, we conclude that

x /∈ A ⇐⇒ x ∈ U for some open set U contained in X −A
⇐⇒ some neighbourhood of x is contained in X −A
⇐⇒ some neighbourhood of x does not intersect A.

This is precisely the statement of the theorem.
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Theorem 2.5 – Characterisation of closure/interior/boundary

Suppose (X,T ) is a topological space and let A ⊂ X.

2 x ∈ A◦ ⇐⇒ some neighbourhood of x lies within A.

3 x ∈ ∂A ⇐⇒ every neighbourhood of x intersects A and X −A.

Proof. By definition, the interior A◦ is the union of all open sets
which are contained in A. Thus, we have

x ∈ A◦ ⇐⇒ x ∈ U for some open set U contained in A

⇐⇒ some neighbourhood of x is contained in A.

This settles part 2 . To prove 3 , we recall 1 which states that

x ∈ A ⇐⇒ every neighbourhood of x intersects A.

Since ∂A = A ∩X −A by definition, the result now follows.
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Theorem 2.6 – Interior, closure and boundary

One has A◦ ∩ ∂A = ∅ and also A◦ ∪ ∂A = A for any set A.

Proof. If x ∈ A◦, then x has a neighbourhood U that lies within A
and this neighbourhood does not intersect X −A, so x /∈ ∂A. This
proves the first statement. To prove the second, we recall that

A◦ ⊂ A ⊂ A and ∂A ⊂ A.

This implies the inclusion A◦ ∪ ∂A ⊂ A, so it remains to prove the
opposite inclusion. Suppose that x ∈ A. Then every neighbourhood
of x intersects A and we examine two cases. If every neighbourhood
of x intersects X −A, then we must have x ∈ ∂A. Otherwise, there
is a neighbourhood of x that does not intersect X − A. Since this
neighbourhood lies entirely within A, we must have x ∈ A◦.
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Theorem 2.7 – Limit points and closure

Let (X,T ) be a topological space and let A ⊂ X. If A′ is the set of
all limit points of A, then the closure of A is A = A ∪A′.

Proof. One has A ⊂ A by definition. To see that A′ ⊂ A as well,
suppose that x ∈ A′. Then every neighbourhood of x intersects A
at a point other than x, so x ∈ A. This proves the inclusion

A ∪A′ ⊂ A.

To prove the opposite inclusion, suppose that x ∈ A, but x /∈ A.
Then every neighbourhood of x intersects A at a point other than x
and so x ∈ A′. This proves the opposite inclusion A ⊂ A ∪A′.
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Theorem 2.8 – Composition of continuous functions

Suppose f : X → Y and g : Y → Z are continuous functions between
topological spaces. Then the composition g ◦f : X → Z is continuous.

Proof. Suppose that U is open in Z. Then g−1(U) is open in Y
by continuity and similarly f−1(g−1(U)) is open in X. On the other
hand, it is easy to check that

f−1(g−1(U)) = {x ∈ X : f(x) ∈ g−1(U)}
= {x ∈ X : g(f(x)) ∈ U}
= (g ◦ f)−1(U).

Thus, (g ◦ f)−1(U) is open in X and so g ◦ f is continuous.
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Theorem 2.9 – Continuity and sequences

Let f : X → Y be a continuous function between topological spaces
and let {xn} be a sequence of points of X which converges to x ∈ X.
Then the sequence {f(xn)} must converge to f(x).

Proof. Let U be an open set that contains f(x). Then f−1(U) is
an open set that contains x. Since xn → x as n → ∞, there is an
integer N such that xn ∈ f−1(U) for all n ≥ N . Thus, f(xn) ∈ U
for all n ≥ N and this means that f(xn) converges to f(x).

12 / 45



Theorem 2.10 – Inclusion maps are continuous

Let (X,T ) be a topological space and let A ⊂ X. Then the inclusion
map i : A→ X defined by i(x) = x is continuous.

Proof. Suppose U is an open set in X. Its inverse image is then

i−1(U) = {x ∈ A : i(x) ∈ U}
= {x ∈ A : x ∈ U} = A ∩ U.

Since U is open in X, the intersection A ∩ U is open in A by the
definition of the subspace topology. Thus, i is continuous.
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Theorem 2.11 – Restriction maps are continuous

Let f : X → Y be a continuous function between topological spaces
and let A ⊂ X. Then the restriction map g : A → Y which is defined
by g(x) = f(x) is continuous. This map is often denoted by g = f |A.

Proof. Suppose U is an open set in Y . Its inverse image is then

g−1(U) = {x ∈ A : g(x) ∈ U}
= {x ∈ A : f(x) ∈ U} = A ∩ f−1(U).

By continuity, f−1(U) is open in X, so A ∩ f−1(U) is open in A.
Thus, g−1(U) is open in A and the function g is continuous.
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Theorem 2.12 – Projection maps are continuous

Let (X,T ) and (Y, T ′) be topological spaces. If X × Y is equipped
with the product topology, then the projection map p1 : X × Y → X
defined by p1(x, y) = x is continuous. Moreover, the same is true for
the projection map p2 : X × Y → Y defined by p2(x, y) = y.

Proof. Given a set U which is open in X, one easily finds that

p−11 (U) = {(x, y) ∈ X × Y : p1(x, y) ∈ U}
= {(x, y) ∈ X × Y : x ∈ U}
= U × Y.

Since this is open in the product topology of X × Y , the projection
map p1 is continuous. Similarly, one has p−12 (V ) = X × V for each
set V which is open in Y , so p2 is continuous as well.
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Theorem 2.13 – Continuous map into a product space

Let X,Y, Z be topological spaces. Then a function f : Z → X × Y is
continuous if and only if its components p1 ◦ f , p2 ◦ f are continuous.

Proof. First, suppose f is continuous. Then p1 ◦ f and p2 ◦ f are
compositions of continuous functions, so they are both continuous.

Conversely, suppose p1 ◦ f and p2 ◦ f are both continuous. To
show that f is continuous, it suffices to show that f−1(U × V ) is
open in Z whenever U is open in X and V is open in Y . Since

f−1(U × V ) = {z ∈ Z : f(z) ∈ U × V }
= {z ∈ Z : p1(f(z)) ∈ U and p2(f(z)) ∈ V }
= (p1 ◦ f)−1(U) ∩ (p2 ◦ f)−1(V ),

we find that f−1(U × V ) is open in Z and so f is continuous.
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Theorem 2.14 – Main facts about Hausdorff spaces

1 Every metric space is Hausdorff.

Proof. Let x 6= y be points of a metric space X. Then r = d(x, y)
is positive and we shall consider the open sets

U = B(x, r/2), V = B(y, r/2).

Since x ∈ U and y ∈ V , it remains to show that U ∩ V is empty.
Suppose then that z ∈ U ∩ V . Then we must have

r = d(x, y) ≤ d(x, z) + d(z, y) < r/2 + r/2,

a contradiction. Thus, U ∩ V is empty and X is Hausdorff.
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Theorem 2.14 – Main facts about Hausdorff spaces

2 Every subset of a Hausdorff space is Hausdorff.

Proof. Suppose that X is Hausdorff and let A ⊂ X. Given any two
points x 6= y in A, we can find disjoint sets Ux, Uy which are open
in X with x ∈ Ux and y ∈ Uy. Intersecting these sets with A, we
find that Ux ∩A and Uy ∩A are open in A with

x ∈ Ux ∩A, y ∈ Uy ∩A, (Ux ∩A) ∩ (Uy ∩A) = ∅.

This shows that the subset A is Hausdorff as well.
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Theorem 2.14 – Main facts about Hausdorff spaces

3 Every finite subset of a Hausdorff space is closed.

Proof. Suppose X is Hausdorff. If we can show that the set {x} is
closed for each x ∈ X, then this will imply that every finite set is a
finite union of closed sets, hence also closed.

It remains to show that {x} is closed for each x ∈ X. Given any
point y 6= x, we can find open sets Ux, Uy with

x ∈ Ux, y ∈ Uy, Ux ∩ Uy = ∅.

In particular, each point y 6= x has a neighbourhood that does not
intersect {x} and so y is not in the closure of {x}. This means that
the closure of {x} is {x} itself, so this set is closed, indeed.
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Theorem 2.14 – Main facts about Hausdorff spaces

4 The product of two Hausdorff spaces is Hausdorff.

Proof. Suppose X,Y are both Hausdorff. To show that X × Y
is Hausdorff as well, let (x1, y1) and (x2, y2) be two distinct points.
Then we have either x1 6= x2 or else y1 6= y2.

Suppose that x1 6= x2, as the other case is similar. Then there
exist sets Ux1 , Ux2 which are open in X with

x1 ∈ Ux1 , x2 ∈ Ux2 , Ux1 ∩ Ux2 = ∅.

Then V1 = Ux1 × Y and V2 = Ux2 × Y are open in X × Y with

(x1, y1) ∈ V1, (x2, y2) ∈ V2, V1 ∩ V2 = ∅.

This shows that the product X × Y is Hausdorff as well.
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Theorem 2.14 – Main facts about Hausdorff spaces

5 A convergent sequence in a Hausdorff space has a unique limit.

Proof. Suppose X is Hausdorff and let {xn} be a sequence that has
two different limits x 6= y. Then there exist open sets Ux, Uy with

x ∈ Ux, y ∈ Uy, Ux ∩ Uy = ∅.

Since the limit x lies in Ux, there is an integer N1 such that

xn ∈ Ux for all n ≥ N1.

Since the limit y lies in Uy, there is an integer N2 such that

xn ∈ Uy for all n ≥ N2.

This actually gives xn ∈ Ux ∩Uy for all n ≥ max{N1, N2}, which is
contrary to the fact that the intersection Ux ∩ Uy is empty.
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Theorem 2.15 – Some facts about connected spaces

1 To say that X is connected is to say that the only subsets of X
which are both open and closed in X are the subsets ∅, X.

Proof. Suppose A is both open and closed in X, but A is neither
empty nor equal to X. Then A and B = X −A are nonempty, open
and disjoint with A ∪B = X, so they form a partition of X.

Conversely, suppose A,B form a partition of X. Then A,B are
nonempty, open and disjoint with A ∪ B = X. This means that A
is neither empty nor equal to X. On the other hand, B = X −A is
open in X, so A is both open and closed in X.
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Theorem 2.15 – Some facts about connected spaces

2 The continuous image of a connected space is connected: if X is
connected and f : X → Y is continuous, then f(X) is connected.

Proof. We may assume that f(X) = Y without loss of generality.
Suppose that A,B form a partition of Y . Then A,B are nonempty,
open and disjoint with A ∪ B = Y . Since f is continuous, it easily
follows that the inverse images

U = f−1(A), V = f−1(B)

are nonempty, open and disjoint with U ∪ V = X. In other words,
they form a partition of X, which is contrary to the fact that X is
connected. This implies that Y must be connected as well.

23 / 45



Theorem 2.15 – Some facts about connected spaces

3 A subset of R is connected if and only if it is an interval.

Proof, part 1. An interval is a set I ⊂ R which contains all points
between inf I and sup I. Suppose that A ⊂ R is a set which is not
an interval. Then there exists some real number x such that

inf A < x < supA, x /∈ A.

Since x is larger than the greatest lower bound of A, we see that x
is not a lower bound of A, so a < x for some a ∈ A. Similarly, we
must also have x < b for some b ∈ A. It easily follows that the sets

U = (−∞, x) ∩A, V = (x,+∞) ∩A

are nonempty, disjoint and open in A with U ∪ V = A. Thus, these
sets form a partition of A and so A is not connected.
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Theorem 2.15 – Some facts about connected spaces

3 A subset of R is connected if and only if it is an interval.

Proof, part 2. Conversely, suppose that I ⊂ R is an interval which
has a partition U |V . Pick two points x ∈ U and y ∈ V . Assuming
that x < y without loss of generality, we now set

U ′ = [x, y] ∩ U, z = sup U ′.

Given any integer n ∈ N, there exists a point xn ∈ U ′ such that

z − 1/n ≤ xn ≤ z.

Since U ′ is closed in U and xn → z as n→∞, we see that z ∈ U ′.
In particular, z ∈ U and x ≤ z < y. Since U is open in I, we must
have z + ε ∈ U for all small enough ε > 0 and so z + ε ∈ U ′ for all
small enough ε > 0. This contradicts the fact that z = supU ′.
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Theorem 2.15 – Some facts about connected spaces

4 If a connected space A is a subset of X and the sets U, V form a
partition of X, then A must lie entirely within either U or V .

Proof. Consider the sets A ∩ U and A ∩ V . These are open in A,
they are disjoint and their union is equal to

(A ∩ U) ∪ (A ∩ V ) = A ∩ (U ∪ V ) = A ∩X = A.

Since A is connected, one of the two sets must be empty. Suppose
that A∩U is empty, as the other case is similar. Then A is a subset
of X = U ∪ V which does not intersect U , so A ⊂ V .
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Theorem 2.16 – Some more facts about connected spaces

1 If A is a connected subset of X, then A is connected as well.

Proof. Suppose U, V form a partition of the closure A. Since A is a
connected subset of this partition, it must lie within either U or V .
Assume that A ⊂ U without loss of generality. Then we have

A ⊂ U ⊂ X − V

and this makes X − V a closed set that contains A. In view of the
definition of the closure, the smallest such set is A, so

A ⊂ X − V =⇒ U ∪ V ⊂ X − V.

This means that V must be empty, which is contrary to assumption.
In particular, A has no partition and the result follows.
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Theorem 2.16 – Some more facts about connected spaces

2 Consider a collection of connected sets Ui that have a point in
common. Then the union of these sets is connected as well.

Proof. Suppose A,B form a partition of the union and let x be a
point which is contained in Ui for all i. Then x belongs to either A
or B. Assume that x ∈ A without loss of generality. Since Ui is a
connected subset of the partition, it must lie entirely within either A
or B. Since Ui contains x, however, we must have

Ui ⊂ A for all i =⇒
⋃
i

Ui ⊂ A.

This means that B must be empty, which is contrary to assumption.
In particular,

⋃
i Ui has no partition and the result follows.
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Theorem 2.16 – Some more facts about connected spaces

3 The product of two connected spaces is connected.

Proof. Suppose X,Y are connected spaces and let (x, y) ∈ X × Y .
The set X × {y} corresponds to a horizontal line in X × Y and it is
also the image of X under the function

f : X → X × {y}, f(x) = (x, y).

Since X is connected and f is easily seen to be continuous, we see
that each horizontal line X × {y} is connected. A similar argument
shows that each vertical line {x} × Y is connected as well. These
two sets have a point in common, so their cross-shaped union

Cxy = X × {y} ∪ {x} × Y

is connected itself. On the other hand, one has X×Y =
⋃

xCxy for
any fixed y ∈ Y , so the product X × Y is connected as well.
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Theorem 2.17 – Connected components are closed

Let (X,T ) be a topological space. Then X is the disjoint union of its
connected components and each connected component is closed in X.

Proof. Let Cx be the connected component of x for each x ∈ X.
According to the previous theorem, Cx is also connected. Since Cx

is the largest connected set that contains x, this implies Cx ⊂ Cx,
so the two sets are equal and Cx is closed.

Now, it is clear that X is the union of all connected components,
as each element x is contained in Cx. Thus, it remains to show that
the connected components are disjoint. Suppose that Cx, Cy have a
point in common. Then Cx ∪ Cy is connected and it contains each
of x, y. This actually implies that

Cx ∪ Cy ⊂ Cx and Cx ∪ Cy ⊂ Cy.

In particular, the connected components Cx, Cy must be equal.
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Theorem 2.18 – Compactness and convergence

Suppose that X is a compact metric space. Then every sequence in X
has a convergent subsequence.

Proof. Let {xn} be a sequence in X and let x ∈ X be arbitrary.

If the open ball B(x, 1/k) contains infinitely many terms of the
sequence for each k > 0, one may choose a term xnk

∈ B(x, 1/k)
for each k > 0 to obtain a subsequence that converges to x.

Assume this is not the case. Given any x ∈ X, we can then find
some open ball B(x, 1/k) that contains finitely many terms of the
sequence. These open balls form an open cover of X and a finite
subcover exists by compactness. Since the finite subcover contains
only finitely many terms, the whole sequence contains finitely many
terms. In particular, one of the terms appears infinitely many times
and this gives rise to a constant, convergent subsequence.
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Theorem 2.19 – Main facts about compact spaces

1 A compact subset of a Hausdorff space is closed.

Proof. Suppose X is Hausdorff and A ⊂ X is compact. To show
that X − A is open, let x ∈ X − A be given. Then for each y ∈ A
there exist disjoint open sets Uy, Vy such that x ∈ Uy and y ∈ Vy.
Since the sets Vy form an open cover of A, finitely many of them
cover A by compactness. Suppose that Vy1 , . . . , Vyn do and let

U = Uy1 ∩ · · · ∩ Uyn .

Since U does not intersect any Vyi , it does not intersect A, either.

This shows that each x ∈ X − A has a neighbourhood U which
lies entirely within X − A. In other words, every element of X − A
lies in the interior of X −A. It easily follows that X −A is equal to
its interior, so this set is open and A is closed.
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Theorem 2.19 – Main facts about compact spaces

2 A closed subset of a compact space is compact.

Proof. Suppose X is compact and let A ⊂ X be closed. To show
that A is compact, suppose the sets Ui form an open cover of A.
Adjoining X − A to these sets gives an open cover of X. This has
a finite subcover by compactness, so X is covered by finitely many
of the sets Ui along with X −A. In particular, A itself is covered by
finitely many of the sets Ui and so A is compact.
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Theorem 2.19 – Main facts about compact spaces

3 The interval [a, b] is compact for all real numbers a < b.

Proof. Suppose I0 = [a, b] is not compact. Then some open sets Ui

form an open cover of I0 with no finite subcover. Divide I0 into two
closed intervals of equal length. At least one of them is not covered
by finitely many Ui. Denote it by I1 and proceed in this manner to
get a sequence of closed intervals In that are not covered by finitely
many Ui, while In has length (b− a)/2n and In ⊃ In+1 for all n.

The numbers xn = min In form an increasing sequence which is
also bounded. Let x denote its limit. We note that x ∈ In for all n
and x ∈ Uj for some j. Since Uj is open, there exists some ε > 0
such that I = (x − ε, x + ε) lies within Uj . Pick an integer n such
that (b − a)/2n < ε. The intervals In, I both contain x, while the
length of In is less than ε. This implies that In ⊂ I ⊂ Uj , which is
contrary to the fact that In is not covered by a single Uj .
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Theorem 2.19 – Main facts about compact spaces

4 The continuous image of a compact space is compact: if X is
compact and f : X → Y is continuous, then f(X) is compact.

Proof. Suppose the sets Ui form an open cover of f(X). Since f
is continuous, the inverse images f−1(Ui) must then form an open
cover of X. In particular, finitely many of them cover X, say

X = f−1(U1) ∪ · · · ∪ f−1(Un).

It easily follows that

f(X) = U1 ∪ · · · ∪ Un.

Thus, finitely many Ui cover f(X) and so f(X) is compact.
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Theorem 2.19 – Main facts about compact spaces

5 If X is compact and f : X → R is continuous, then f is bounded.

Proof. According to part 4 , the image f(X) is compact. Consider
the open intervals (−n, n) with n ∈ N. These form an open cover
of f(X), so finitely many of them cover f(X) and

f(X) ⊂ (−n1, n1) ∪ · · · ∪ (−nk, nk)

for some positive integers n1, . . . , nk. Letting N denote the largest
of these integers, we conclude that

f(X) ⊂ (−N,N).

In other words, |f(x)| < N for all x ∈ X and so f is bounded.
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Theorem 2.19 – Main facts about compact spaces

6 If X is compact and f : X → R is continuous, then there exist
points a, b ∈ X such that f(a) ≤ f(x) ≤ f(b) for all x ∈ X.

Proof. We note that f is bounded by part 5 . Let m and M denote
its infimum and supremum, respectively. Then m ≤ f(x) ≤ M for
all x ∈ X and we need to show that neither inequality is strict. We
only prove this for the first inequality, as the other one is similar.

Suppose that f(x) > m for all x ∈ X. Then the function

g(x) =
1

f(x)−m

is positive and continuous on X, so it must be bounded. Let R > 0
be a real number such that g(x) ≤ R for all x ∈ X. Then it easily
follows that f(x) ≥ m+ 1/R for all x ∈ X. This makes m+ 1/R a
lower bound of f , contrary to the fact that m = inf f .
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Theorem 2.19 – Main facts about compact spaces

7 The product of two compact spaces is compact.

Proof. Suppose that X,Y are compact and consider an open cover
of X × Y . We may assume it consists of the sets Wi = Ui × Vi,
where each Ui is open in X and each Vi is open in Y .

Given any y ∈ Y , one may define a surjective function

f : X → X × {y}, f(x) = (x, y).

Then f is continuous, so X × {y} is compact and thus covered by
finitely many sets Wi = Ui×Vi. Let V (y) denote the intersection of
the corresponding sets Vi. Then V (y) is a neighbourhood of y such
that X × V (y) is covered by finitely many sets Wi = Ui × Vi.

The open sets V (y) obtained above form an open cover of Y , so
finitely many of them cover Y . Since each X × V (y) is covered by
finitely many sets Wi, the same is true for the product X × Y .
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Theorem 2.20 – Heine-Borel theorem

A subset of Rk is compact if and only if it is closed and bounded.

Proof. Suppose that A ⊂ Rk is compact. Then A is a compact
subset of a Hausdorff space, hence also closed. Since Rk is covered
by the open boxes (−n, n)k with n ∈ N, finitely many of these boxes
must cover A, so A is bounded as well.

Conversely, suppose that A ⊂ Rk is closed and bounded. Then
there is a positive integer N such that A is contained in the closed
box [−N,N ]k. We note that this box is compact because a finite
product of compact spaces is compact by induction. In particular, A
is a closed subset of a compact space, hence also compact.
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Theorem 2.21 – Main facts about homeomorphisms

1 Consider two homeomorphic topological spaces. If one of them is
connected or compact or Hausdorff, then so is the other.

Proof. Suppose that f : X → Y is a homeomorphism. Then f and
its inverse f−1 are both continuous. Since the continuous image of
a connected space is connected, Y is connected if and only if X is
connected. The same argument applies for compact spaces because
the continuous image of a compact space is compact.

Finally, suppose that Y is Hausdorff and x1, x2 ∈ X are distinct.
Since f is bijective, the images f(x1), f(x2) ∈ Y are also distinct,
so they are contained in disjoint neighbourhoods U, V . The inverse
images of those are then disjoint neighbourhoods of x1, x2.

This shows that X is Hausdorff, if Y is Hausdorff. The converse
follows by applying this result to the inverse function f−1.
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Theorem 2.21 – Main facts about homeomorphisms

2 Suppose f : X → Y is bijective and continuous. If X is compact
and Y is Hausdorff, then f is a homeomorphism.

Proof. We need only show that f−1 is continuous. Suppose U is
open in X. Then X − U is closed in the compact space X, so it
is compact. Since f is continuous, it follows that f(X − U) is a
compact subset of the Hausdorff space Y , so it is closed in Y .

On the other hand, the fact that f is bijective implies that

y ∈ f(X − U) ⇐⇒ y = f(x) for some x /∈ U
⇐⇒ y /∈ f(U).

In other words, one has f(X − U) = Y − f(U). Since this set is
closed in Y , we conclude that f(U) is open in Y , as needed.
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Theorem 2.22 – Main facts about uniform continuity

1 Every Lipschitz continuous function is uniformly continuous.

Proof. Suppose that f : X → Y is a Lipschitz continuous function.
Then there exists a constant L ≥ 0 such that

dY (f(x), f(y)) ≤ L · dX(x, y) for all x, y ∈ X.

Let ε > 0 be given. When L > 0, we can take δ = ε/L to find that

dX(x, y) < δ =⇒ dY (f(x), f(y)) ≤ L · dX(x, y)

=⇒ dY (f(x), f(y)) < L · δ = ε.

This shows that f is uniformly continuous on X. When L = 0, one
still has dY (f(x), f(y)) ≤ 0 < ε, so the same conclusion holds.
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Theorem 2.22 – Main facts about uniform continuity

2 Every uniformly continuous function is continuous.

Proof. To say that f : X → Y is uniformly continuous on X is to
say that given any ε > 0 there exists some δ > 0 such that

dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε

for all x, y ∈ X. To say that f is continuous at a point x ∈ X is
to say that the same condition holds for all y ∈ X. Thus, uniform
continuity on X trivially implies continuity at all points of X.
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Theorem 2.22 – Main facts about uniform continuity

3 When X is compact, a function f : X → Y is continuous on X if
and only if it is uniformly continuous on X.

Proof, part 1. Uniform continuity on X trivially implies continuity
at all points of X. To prove the converse, let ε > 0 be given. Then
for each point x ∈ X there exists some δ(x) > 0 such that

dX(x, y) < δ(x) =⇒ dY (f(x), f(y)) < ε/2.

Since the open balls B(x, δ(x)/2) form an open cover of X, finitely
many of them cover X by compactness, say

X =

n⋃
i=1

B(xi, δ(xi)/2).

Letting δ > 0 be the smallest of the finitely many numbers δ(xi)/2,
we shall now show that f is uniformly continuous on X.
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Theorem 2.22 – Main facts about uniform continuity

3 When X is compact, a function f : X → Y is continuous on X if
and only if it is uniformly continuous on X.

Proof, part 2. Suppose x, y ∈ X are such that dX(x, y) < δ and
note that x ∈ B(xi, δ(xi)/2) for some 1 ≤ i ≤ n. We thus have

dX(y, xi) ≤ dX(y, x) + dX(x, xi) < δ + δ(xi)/2 ≤ δ(xi).

Once we now recall the definition of δ(xi), we may conclude that

dY (f(x), f(y)) ≤ dY (f(x), f(xi)) + dY (f(xi), f(y)) < ε.

This shows that the function f is uniformly continuous on X.
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