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Theorem 1.1 – Technical inequalities

Suppose that x, y ≥ 0 and let a, b, c be arbitrary vectors in R
k.

1 Young’s inequality: If p, q > 1 are such that 1
p + 1

q = 1, then

xy ≤ xp

p
+

yq

q
.

Proof. Let y ≥ 0 be fixed and consider the function

f(x) =
xp

p
+

yq

q
− xy, x ≥ 0.

Since f ′(x) = xp−1 − y, this function is decreasing when xp−1 < y
and increasing when xp−1 > y, so it attains its minimum value at
the point x∗ = y1/(p−1). One may now easily check that f(x∗) = 0
and this implies that f(x) ≥ 0 for all x ≥ 0, as needed.
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Theorem 1.1 – Technical inequalities

Suppose that x, y ≥ 0 and let a, b, c be arbitrary vectors in R
k.

2 Hölder’s inequality: If p, q > 1 are such that 1
p +

1
q = 1, then

k
∑

i=1

|ai| · |bi| ≤
[

k
∑

i=1

|ai|p
]1/p [ k

∑

i=1

|bi|q
]1/q

.

Proof. The result is clear when either a or b is zero. When a, b are
both nonzero, we need to show that

∑k
i=1 xiyi ≤ 1, where

xi = |ai| ·
[

k
∑

i=1

|ai|p
]−1/p

and yi = |bi| ·
[

k
∑

i=1

|bi|q
]−1/q

.

Young’s inequality gives xiyi ≤ 1
px

p
i +

1
qy

q
i for each i. Once we now

add these inequalities, we find that
∑k

i=1 xiyi ≤ 1
p +

1
q = 1.
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Theorem 1.1 – Technical inequalities

Suppose that x, y ≥ 0 and let a, b, c be arbitrary vectors in R
k.

3 Minkowski’s inequality: If p > 1, then

dp(a, b) ≤ dp(a, c) + dp(c, b).

Proof. First, we use the triangle inequality in R to find that

dp(a, b)
p ≤

k
∑

i=1

|ai − ci| |ai − bi|p−1 +

k
∑

i=1

|ci − bi| |ai − bi|p−1.

Letting q = p
p−1 , we also have 1

p +
1
q = 1, so Hölder’s inequality gives

dp(a, b)
p ≤ dp(a, c) dp(a, b)

p−1 + dp(c, b) dp(a, b)
p−1.

This already implies Minkowski’s inequality whenever dp(a, b) 6= 0
and the inequality holds trivially whenever dp(a, b) = 0.

4 / 37



Theorem 1.2 – Main facts about open sets

1 If X is a metric space, then both ∅ and X are open in X.

2 Arbitrary unions of open sets are open.

Proof. First, we prove 1 . The definition of an open set is satisfied
by every point in the empty set simply because there is no point in
the empty set. This means that ∅ is open in X. To show that X is
open in X, let x ∈ X and consider the open ball B(x, 1). This is a
subset of X by definition, so X is open in X.

Next, we prove 2 . Suppose that the sets Ui are open in X and
let x be a point in their union. Then x ∈ Ui for some i. Since Ui is
open in X, there exists ε > 0 such that B(x, ε) ⊂ Ui. This implies
that B(x, ε) ⊂ ⋃

i Ui, so the union is open in X as well.
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Theorem 1.2 – Main facts about open sets

3 Finite intersections of open sets are open.

Proof. Suppose that the sets Ui are open in X and let x be a point
in their intersection. Then x ∈ Ui for all i. Since Ui is open in X
for each i, there exists εi > 0 such that B(x, εi) ⊂ Ui. Let ε be the
smallest of the finitely many numbers εi. Then ε > 0 and we have

B(x, ε) ⊂ B(x, εi) ⊂ Ui

for all i. This shows that the intersection is open in X as well.
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Theorem 1.2 – Main facts about open sets

4 Every open ball is an open set.

Proof. Consider the ball B(x, ε) and let y ∈ B(x, ε) be arbitrary.
Then d(x, y) < ε and so the number r = ε− d(x, y) is positive. To
finish the proof, it suffices to show that B(y, r) ⊂ B(x, ε).

Suppose then that z ∈ B(y, r). Since d(y, z) < r, we have

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + r = ε

and so z ∈ B(x, ε). This shows that B(y, r) ⊂ B(x, ε).
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Theorem 1.2 – Main facts about open sets

5 A set is open if and only if it is a union of open balls.

Proof. Suppose first that U is a union of open balls. Then U is a
union of open sets by part 4 , so it is open itself by part 2 .

Conversely, suppose that U is an open set. Given any x ∈ U , we
can then find some εx > 0 such that B(x, εx) ⊂ U . This gives

{x} ⊂ B(x, εx) ⊂ U

and we can take the union over all possible x ∈ U to find that

U ⊂
⋃

x∈U

B(x, εx) ⊂ U.

Thus, U is a union of open balls and the proof is complete.
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Theorem 1.3 – Limits are unique

The limit of a sequence in a metric space is unique. In other words, no
sequence may converge to two different limits.

Proof. Suppose {xn} is a convergent sequence which converges to
two different limits x 6= y. Then ε = 1

2d(x, y) is positive, so there
exist integers N1, N2 such that

d(xn, x) < ε for all n ≥ N1,

d(xn, y) < ε for all n ≥ N2.

Setting N = max{N1, N2} for convenience, we conclude that

2ε = d(x, y) ≤ d(x, xn) + d(xn, y) < 2ε

for all n ≥ N . This is a contradiction, so the limit is unique.
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Theorem 1.4 – Main facts about closed sets

1 If a subset A ⊂ X is closed in X, then every sequence of points
of A that converges must converge to a point of A.

Proof. Let {xn} be a sequence of points of A that converges and
let x be its limit. Suppose x ∈ X −A. Since X − A is open, there
exists some ε > 0 such that B(x, ε) ⊂ X − A. Since xn converges
to x, there also exists an integer N such that

xn ∈ B(x, ε) for all n ≥ N .

This implies xn ∈ X−A for all n ≥ N , which is contrary to the fact
that xn ∈ A for all n ∈ N. In particular, we must have x ∈ A.
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Theorem 1.4 – Main facts about closed sets

2 Both ∅ and X are closed in X.

3 Finite unions of closed sets are closed.

4 Arbitrary intersections of closed sets are closed.

Proof. First, we prove 2 . Since the sets ∅,X are both open in X,
their complements X,∅ are both closed in X.

To prove 3 and 4 , one needs to use De Morgan’s laws

X −
n
⋃

i=1

Ui =

n
⋂

i=1

(X − Ui), X −
⋂

i

Ui =
⋃

i

(X − Ui).

For instance, consider finitely many sets Ui which are closed in X.
Their complements X − Ui are then open in X, so the same is true
for their intersection. Using the first De Morgan’s law, we conclude
that the union of the sets Ui is closed in X. This proves 3 and one
may similarly prove 4 using the second De Morgan’s law.
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Theorem 1.5 – Composition of continuous functions

Suppose f : X → Y and g : Y → Z are continuous functions between
metric spaces. Then the composition g ◦ f : X → Z is continuous.

Proof. We show that g ◦ f is continuous at any x ∈ X. Let ε > 0
be given. Since g is continuous at f(x), there exists δ > 0 with

dY (f(x), y) < δ =⇒ dZ(g(f(x)), g(y)) < ε.

Since f is continuous at x, there also exists δ′ > 0 with

dX(x, x′) < δ′ =⇒ dY (f(x), f(x
′)) < δ.

Once we now combine the last two equations, we find that

dX(x, x′) < δ′ =⇒ dZ(g(f(x)), g(f(x
′))) < ε.

This shows that the composition g ◦ f is continuous at x.
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Theorem 1.6 – Continuity and sequences

Suppose f : X → Y is a continuous function between metric spaces
and let {xn} be a sequence of points of X which converges to x ∈ X.
Then the sequence {f(xn)} must converge to f(x).

Proof. Let ε > 0 be given. Then there exists some δ > 0 such that

dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε.

Since xn converges to x, there also exists an integer N such that

dX(xn, x) < δ for all n ≥ N .

Once we now combine the last two equations, we find that

dY (f(xn), f(x)) < ε for all n ≥ N .

This shows that f(xn) converges to f(x), as needed.
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Theorem 1.7 – Continuity and open sets

A function f : X → Y between metric spaces is continuous if and only
if f−1(U) is open in X for each set U which is open in Y .

Proof. First, suppose f is continuous and let U be open in Y . To
show that f−1(U) is open, let x ∈ f−1(U). Then f(x) ∈ U and so
there exists ε > 0 such that B(f(x), ε) ⊂ U . By continuity, there
also exists δ > 0 such that

y ∈ B(x, δ) =⇒ f(y) ∈ B(f(x), ε). (∗)

This implies that B(x, δ) ⊂ f−1(U) and so f−1(U) is open.

Conversely, suppose f−1(U) is open in X for each set U which is
open in Y . Let x ∈ X and ε > 0 be given. Setting U = B(f(x), ε),
we find that f−1(U) is open in X. This gives B(x, δ) ⊂ f−1(U) for
some δ > 0, so the definition (∗) of continuity holds.
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Theorem 1.8 – Main facts about Lipschitz continuity

1 Every Lipschitz continuous function is continuous.

Proof. Suppose f : X → Y is a Lipschitz continuous function. To
show that f is continuous at all points x ∈ X, let ε > 0 be given.
Since f is Lipschitz continuous, we have

dY (f(x), f(y)) ≤ L · dX(x, y)

for some L ≥ 0. When L > 0, we can take δ = ε/L to find that

dX(x, y) < δ =⇒ dY (f(x), f(y)) ≤ L · dX(x, y)

=⇒ dY (f(x), f(y)) < L · δ = ε.

When L = 0, one always has dY (f(x), f(y)) ≤ 0 < ε, so the choice
of δ is irrelevant. Thus, f is continuous at x in any case.
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Theorem 1.8 – Main facts about Lipschitz continuity

2 If a function f : [a, b] → R is differentiable and its derivative is
bounded, then f is Lipschitz continuous on [a, b].

Proof. Suppose |f ′(x)| ≤ M for all x ∈ [a, b] and let x, y ∈ [a, b] be
arbitrary. Using the mean value theorem, we can then write

|f(x)− f(y)| = |f ′(c)| · |x− y|

for some c between x and y. This obviously gives

|f(x)− f(y)| ≤ M · |x− y|

for all x, y ∈ [a, b] and so f is Lipschitz continuous on [a, b].
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Theorem 1.9 – Pointwise and uniform convergence

1 To say that fn(x) → f(x) pointwise is to say that

|fn(x)− f(x)| → 0 as n → ∞.

Proof. By definition, to say that fn(x) → f(x) pointwise is to say
that, given any ε > 0 there exists an integer N such that

|fn(x)− f(x)| < ε for all n ≥ N .

This is the case if and only if |fn(x)− f(x)| → 0 as n → ∞.
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Theorem 1.9 – Pointwise and uniform convergence

2 To say that fn → f uniformly on X is to say that

sup
x∈X

|fn(x)− f(x)| → 0 as n → ∞.

Proof. Let Mn = supx∈X |fn(x) − f(x)| for convenience. Suppose
that Mn → 0 as n → ∞ and let ε > 0 be given. Then there is an
integer N such that Mn < ε for all n ≥ N , so we also have

|fn(x)− f(x)| ≤ Mn < ε

for all n ≥ N and all x ∈ X. In particular, fn → f uniformly on X.

Conversely, suppose fn → f uniformly on X and let ε > 0 be
given. Then there is an integer N such that |fn(x) − f(x)| < ε/2
for all n ≥ N and all x ∈ X. Taking the supremum over all x ∈ X,
we get Mn ≤ ε/2 < ε for all n ≥ N , so Mn → 0 as n → ∞.
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Theorem 1.10 – Uniform limit of continuous functions

The uniform limit of continuous functions is continuous: if each fn is
continuous and fn → f uniformly on X, then f is continuous on X.

Proof. Let ε > 0 be given. Then there is an integer N such that

|fn(x)− f(x)| < ε/3 for all n ≥ N and all x ∈ X.

Since fN is continuous at the point x, there exists δ > 0 such that

d(x, y) < δ =⇒ |fN (x)− fN(y)| < ε/3.

Suppose now that d(x, y) < δ. Then the triangle inequality gives

|f(x)− f(y)| ≤ |f(x)− fN (x)|
+ |fN (x)− fN (y)|+ |fN (y)− f(y)| < ε.

In particular, f is continuous at each point x ∈ X, as needed.
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Theorem 1.11 – Convergent implies Cauchy

In a metric space, every convergent sequence is a Cauchy sequence.

Proof. Suppose that {xn} is a sequence which converges to x and
let ε > 0 be given. Then there exists an integer N such that

d(xn, x) < ε/2 for all n ≥ N .

Using this fact and the triangle inequality, we conclude that

d(xm, xn) ≤ d(xm, x) + d(x, xn) < ε

for all m,n ≥ N . This shows that the sequence is Cauchy.
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Theorem 1.12 – Cauchy implies bounded

In a metric space, every Cauchy sequence is bounded.

Proof. Suppose {xn} is a Cauchy sequence in a metric space X.
Then there exists an integer N such that

d(xm, xn) < 1 for all m,n ≥ N .

Taking n = N , in particular, we find that

d(xm, xN ) < 1 for all m ≥ N .

Thus, every term starting with the N th term lies in the open ball of
radius 1 around xN . As for the other terms, we have

R = max
1≤m<N

d(xm, xN ) =⇒ d(xm, xN ) ≤ R

for all m < N . This implies that d(xi, xN ) < R+ 1 for all i.
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Theorem 1.13 – Cauchy sequence with convergent subsequence

Suppose (X, d) is a metric space and let {xn} be a Cauchy sequence
in X that has a convergent subsequence. Then {xn} converges itself.

Proof. Suppose that {xn} is Cauchy and {xnk
} converges to x. We

claim that {xn} converges to x as well. Let ε > 0 be given. Then
there exist integers N1, N2 such that

d(xm, xn) < ε/2 for all m,n ≥ N1,

d(xnk
, x) < ε/2 for all nk ≥ N2.

Set N = max{N1, N2} and fix some nk ≥ N . Then we have

d(xm, x) ≤ d(xm, xnk
) + d(xnk

, x) < ε

for all m ≥ N and this implies that xm → x as m → ∞.
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Theorem 1.14 – Completeness of R

1 Every sequence in R which is monotonic and bounded converges.

Proof. Suppose that {xn} is increasing and bounded, as the case
that {xn} is decreasing is similar. We claim that α = supxn is the
limit of the sequence. Let ε > 0 be given. Since α − ε is less than
the least upper bound, there exists a term xN such that

α− ε < xN ≤ α.

Since the sequence {xn} is increasing, this actually gives

α− ε < xn ≤ α

for all n ≥ N . In particular, |xn − α| = α − xn < ε for all n ≥ N
and this implies that xn → α as n → ∞.
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Theorem 1.14 – Completeness of R

2 Bolzano-Weierstrass theorem: Every bounded sequence in R

has a convergent subsequence.

Proof. Suppose {xn} is a bounded sequence. We say that xk is a
peak point, if all subsequent terms are smaller than xk. Let us now
consider two cases. If there are infinitely many peak points, then
there is a subsequence xn1

, xn2
, xn3

, . . . consisting of peak points
and this is decreasing, hence also convergent.

Otherwise, there are finitely many peak points. Choose N1 large
enough so that xN1

is not a peak point. Then there is a subsequent
term xN2

which is larger. Since xN2
is not a peak point, there is a

further term which is even larger. Proceeding in this way, we obtain
a subsequence which is increasing, hence also convergent.
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Theorem 1.14 – Completeness of R

3 The set R of all real numbers is a complete metric space.

Proof. Suppose that {xn} is a Cauchy sequence in R. Then it is
also bounded, so it has a convergent subsequence by part 2 . Using
Theorem 1.13, we conclude that {xn} converges itself. This shows
that every Cauchy sequence in R converges, so R is complete.
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Theorem 1.15 – Examples of complete metric spaces

1 The space R
k is complete with respect to its usual metric.

Proof. Let xn = (xn1, xn2, . . . , xnk) be a Cauchy sequence in R
k

and let ε > 0 be given. Each xni forms a Cauchy sequence in R, as

|xmi − xni|2 ≤
k

∑

i=1

|xmi − xni|2 = d2(xm,xn)
2.

Let xi be the limit of xni as n → ∞. Then there is an integer N
such that |xni − xi| < ε/

√
k for all n ≥ N and each 1 ≤ i ≤ k.

Once we now set x = (x1, x2, . . . , xk), we find that

d2(xn,x)
2 =

k
∑

i=1

|xni − xi|2 <
k

∑

i=1

ε2/k = ε2

for all n ≥ N . Thus, xn is convergent and so R
k is complete.
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Theorem 1.15 – Examples of complete metric spaces

2 The space C[a, b] is complete with respect to the d∞ metric.

Proof. Suppose that {fn} is a Cauchy sequence in C[a, b]. Given
any ε > 0, we can then find an integer N such that

|fm(x)− fn(x)| < ε/2 for all m,n ≥ N and all x ∈ [a, b].

Thus, {fn(x)} is a Cauchy sequence in R for each x ∈ [a, b]. Denote
the limit of this sequence by f(x). Letting m → ∞, we get

|f(x)− fn(x)| ≤ ε/2 for all n ≥ N and all x ∈ [a, b].

Taking the supremum over all x ∈ [a, b] now gives d∞(f, fn) < ε for
all n ≥ N . This shows that d∞(f, fn) → 0 as n → ∞ which also
means that fn → f uniformly on [a, b]. Since f is the uniform limit
of continuous functions, f is continuous as well.
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Theorem 1.16 – Subsets of a complete metric space

Suppose (X, d) is a complete metric space and let A ⊂ X. Then A is
complete if and only if A is closed in X.

Proof. First, suppose A ⊂ X is closed and let {xn} be a Cauchy
sequence in A. This sequence converges in X by completeness. In
view of Theorem 1.4, the limit of the sequence lies in A. That is,
the Cauchy sequence converges in A and so A is complete.

Conversely, suppose A ⊂ X is complete. To show that X − A
is open, let x ∈ X − A and consider the open balls B(x, 1/n) for
each n ∈ N. If one of those lies entirely in X − A, then X − A is
open and the proof is complete. Otherwise, each B(x, 1/n) must
contain a point xn ∈ A. Noting that d(xn, x) < 1/n for each n, we
see that {xn} converges to x ∈ X − A. This contradicts our initial
assumption that the subset A is complete.

28 / 37



Theorem 1.17 – Banach’s fixed point theorem

If f : X → X is a contraction on a complete metric space X, then f
has a unique fixed point, namely a unique point x with f(x) = x.

Proof, part 1. First, we prove uniqueness. Suppose that x 6= y are
both fixed points. Since f is a contraction, we then have

d(x, y) = d(f(x), f(y)) ≤ α · d(x, y)

for some 0 ≤ α < 1. This leads to the contradiction α ≥ 1.

It remains to show existence. Let x ∈ X be arbitrary and define
a sequence by setting x1 = x and xn+1 = f(xn) for each n ≥ 1. If
this sequence is actually Cauchy, then it converges by completeness
and its limit y is a fixed point of f because

y = lim
n→∞

xn =⇒ f(y) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = y.
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Theorem 1.17 – Banach’s fixed point theorem

If f : X → X is a contraction on a complete metric space X, then f
has a unique fixed point, namely a unique point x with f(x) = x.

Proof, part 2. It remains to show that our sequence is Cauchy.
Since f is a contraction and xn+1 = f(xn) for each n, we have

d(xn, xn+k) ≤ d(xn, xn+1) + . . . + d(xn+k−1, xn+k)

=

n+k−1
∑

i=n

d(xi, xi+1) ≤
n+k−1
∑

i=n

αi−1 · d(x1, x2)

≤
∞
∑

i=n

αi−1 · d(x1, x2) =
αn−1

1− α
· d(x1, x2).

The right hand side goes to zero as n → ∞, so the same is true for
the left hand side. This shows that our sequence is Cauchy.
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Theorem 1.18 – Existence and uniqueness of solutions

Consider an initial value problem of the form

y′(t) = f(t, y(t)), y(0) = y0.

If f is continuous in t and Lipschitz continuous in y, then there exists
a unique solution y(t) which is defined on [0, ε] for some ε > 0.

Proof, part 1. It is easy to see that y(t) is a solution if and only if

y(t) = y0 +

∫ t

0
f(s, y(s)) ds.

Let us denote the right hand side by A(y(t)). Then every solution
corresponds to a fixed point of A, so it suffices to show that A is a
contraction on a complete metric space X. In fact, X = C[0, ε] is
complete with respect to the d∞ metric for any ε > 0.
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Theorem 1.18 – Existence and uniqueness of solutions

Consider an initial value problem of the form

y′(t) = f(t, y(t)), y(0) = y0.

If f is continuous in t and Lipschitz continuous in y, then there exists
a unique solution y(t) which is defined on [0, ε] for some ε > 0.

Proof, part 2. To show that A is a contraction, we note that

∣

∣f(s, y(s))− f(s, z(s))
∣

∣ ≤ L |y(s)− z(s)| ≤ Ld∞(y, z).

Fix some 0 < ε < 1/L and let y(t), z(t) ∈ C[0, ε]. We then have

∣

∣A(y(t))−A(z(t))
∣

∣ ≤ Ld∞(y, z)

∫ t

0
ds ≤ εL d∞(y, z)

for all t ∈ [0, ε] and this implies that A is a contraction, indeed.
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Theorem 1.19 – Completion of a metric space

Given a metric space (X, d), there exist a metric space (X ′, d′) and a
distance preserving map f : X → X ′ such that X ′ is complete.

Proof, part 1. Suppose {xn} and {yn} are two Cauchy sequences
in X. Using the triangle inequality, one easily finds that

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

d(xm, ym) ≤ d(xm, xn) + d(xn, yn) + d(yn, ym).

Rearranging terms, we now combine these equations to get

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(ym, yn).

This implies that the sequence of real numbers {d(xn, yn)} is also
Cauchy, so this sequence must converge by completeness. We now
use this fact to define the completion X ′ of the metric space X.
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Theorem 1.19 – Completion of a metric space

Given a metric space (X, d), there exist a metric space (X ′, d′) and a
distance preserving map f : X → X ′ such that X ′ is complete.

Proof, part 2. Consider the set of all Cauchy sequences in X. One
may define a relation on this set by setting

{xn} ∼ {yn} ⇐⇒ lim
n→∞

d(xn, yn) = 0.

This relation is clearly reflexive and symmetric. To see that it is also
transitive, suppose that {xn} ∼ {yn} and {yn} ∼ {zn}. Since

0 ≤ d(xn, zn) ≤ d(xn, yn) + d(yn, zn),

it easily follows that {xn} ∼ {zn} as well. This means that ∼ is
an equivalence relation on the set of Cauchy sequences in X. Let
us denote by X ′ the set of all equivalence classes. We now define a
metric d′ on X ′ and a distance preserving map f : X → X ′.
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Theorem 1.19 – Completion of a metric space

Given a metric space (X, d), there exist a metric space (X ′, d′) and a
distance preserving map f : X → X ′ such that X ′ is complete.

Proof, part 3. One may define a metric on X ′ by letting

d′([xn], [yn]) = lim
n→∞

d(xn, yn).

Suppose that {xn} ∼ {an} and {yn} ∼ {bn}. Using the inequalities

d(an, bn) ≤ d(an, xn) + d(xn, yn) + d(yn, bn),

d(xn, yn) ≤ d(xn, an) + d(an, bn) + d(bn, yn),

we see that d(an, bn) and d(xn, yn) have the same limit as n → ∞.
Thus, d′ is well-defined. Since each x ∈ X gives rise to a constant
sequence, one may also define f : X → X ′ by f(x) = [x]. Then f is
distance preserving, so it remains to show that X ′ is complete.
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Theorem 1.19 – Completion of a metric space

Given a metric space (X, d), there exist a metric space (X ′, d′) and a
distance preserving map f : X → X ′ such that X ′ is complete.

Proof, part 4. A Cauchy sequence in X ′ has the form {[xin]}∞i=1,
where {xin} is a Cauchy sequence in X for each i. In particular, we
can find an integer Ni for each i such that

d(xim, xin) < 1/i for all m,n ≥ Ni.

Consider the sequence {yn} defined by yn = xnNn
. Then we have

d(ym, yn) = d(xmNm
, xnNn

)

≤ d(xmNm
, xmp ) + d(xmp , xnp ) + d(xnp , x

n
Nn

)

for all m,n, p and this implies that {yn} is Cauchy. Once we now
show that [xin] → [yn] as i → ∞, the completeness of X ′ will follow.
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Theorem 1.19 – Completion of a metric space

Given a metric space (X, d), there exist a metric space (X ′, d′) and a
distance preserving map f : X → X ′ such that X ′ is complete.

Proof, part 5. We now show that [xin] → [yn] as i → ∞. Let ε > 0
be given and recall that {yn} is a Cauchy sequence with yn = xnNn

.
In particular, there exists an integer N such that

d(yi, yn) < ε/3 for all i, n ≥ N .

When i ≥ max{N, 3/ε} and n ≥ max{Ni, N}, we must then have

d(xin, yn) ≤ d(xin, yi) + d(yi, yn)

= d(xin, x
i
Ni
) + d(yi, yn)

< 1/i+ ε/3 ≤ 2ε/3.

Thus, [xin] → [yn] as i → ∞ and the proof is finally complete.
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