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/Theorem 1.1 — Technical inequalities

Suppose that 2,y > 0 and let a, b, ¢ be arbitrary vectors in R¥.
@ Young’s inequality: If p,g > 1 are such that % + % =1, then

Yy < — + —.
p q

Proof. Let y > 0 be fixed and consider the function
fle)=—+=-ay, x>0

Since f/(x) = xP~1 — y, this function is decreasing when zP~! < y
and increasing when zP~! > 3, so it attains its minimum value at
the point z, = '/~ One may now easily check that f(z,) = 0
and this implies that f(z) > 0 for all x > 0, as needed. |



(Theorem 1.1 — Technical inequalities

Suppose that z, 7 > 0 and let a, b, ¢ be arbitrary vectors in R¥.
@ Holder’s inequality: If p,g > 1 are such that zlo + é =1, then

1/q

S ol b < lfju] N lfj\bm

=1 =1 =1
\_ ? 7 ? Y,

Proof. The result is clear when either a or b is zero. When a, b are
both nonzero, we need to show that Zle ziy; < 1, where

—-1/p —1/q

k k
z; = |ag| - [Z |ai|p] and y; = |b; - [Z |bz‘|q]
=1 =1

Young's inequality gives x;y; < p zl + yq for each i. Once we now

add these inequalities, we find that Zi:l xiyy < >t E =1. |



L

(Theorem 1.1 — Technical inequalities

Suppose that 2,y > 0 and let a, b, ¢ be arbitrary vectors in R¥.
©® Minkowski’s inequality: If p > 1, then

dy(a,b) < dy(a,c) + dy(c,b).

Proof. First, we use the triangle inequality in R to find that
k k
dp(a,b)? <> la; — cil |a; — bilP ™ + Y e — byl Ja; — by
i=1 =1
Letting ¢ = ]ﬁ, we also have %—i—% = 1, so Holder's inequality gives
dy(a,b)P < dy(a,c)dy(a,b)P~! +d,(c,b)dy(a,b)P~ .

This already implies Minkowski's inequality whenever d,(a,b) # 0
and the inequality holds trivially whenever d,(a,b) = 0. |



(Theorem 1.2 — Main facts about open sets

L

@ If X is a metric space, then both & and X are open in X.

@ Arbitrary unions of open sets are open.

Proof. First, we prove @. The definition of an open set is satisfied
by every point in the empty set simply because there is no point in
the empty set. This means that @ is open in X. To show that X is
open in X, let z € X and consider the open ball B(z,1). This is a
subset of X by definition, so X is open in X.

Next, we prove @. Suppose that the sets U; are open in X and
let  be a point in their union. Then z € U; for some i. Since Uj; is
open in X, there exists ¢ > 0 such that B(z,e) C U;. This implies
that B(z,e) C |J; Ui, so the union is open in X as well. |



(Theorem 1.2 — Main facts about open sets

k ©® Finite intersections of open sets are open.

NN

Proof. Suppose that the sets U; are open in X and let = be a point
in their intersection. Then x € U; for all i. Since U; is open in X
for each i, there exists ¢; > 0 such that B(z,e;) C U;. Let € be the
smallest of the finitely many numbers €;. Then € > 0 and we have

B(IL’,E) C B(a:,si) c U;

for all . This shows that the intersection is open in X as well. W



(Theorem 1.2 — Main facts about open sets

k @ Every open ball is an open set.

NN

Proof. Consider the ball B(x,c) and let y € B(z,¢) be arbitrary.
Then d(x,y) < e and so the number r = & — d(x,y) is positive. To
finish the proof, it suffices to show that B(y,r) C B(x,¢).

Suppose then that z € B(y,r). Since d(y,z) < r, we have

d(z,z) < d(xz,y) +d(y,z) <d(z,y)+r=c¢

and so z € B(xz,¢). This shows that B(y,r) C B(x,¢). |
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(Theorem 1.2 — Main facts about open sets

k @ A set is open if and only if it is a union of open balls.

NN

Proof. Suppose first that U is a union of open balls. Then U is a
union of open sets by part @, so it is open itself by part @.

Conversely, suppose that U is an open set. Given any x € U, we
can then find some ¢, > 0 such that B(z,e,) C U. This gives

{z} C B(x,e,) CU
and we can take the union over all possible z € U to find that

Uc | B@e)CU
zelU

Thus, U is a union of open balls and the proof is complete. |
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Theorem 1.3 — Limits are unique

L

The limit of a sequence in a metric space is unique. In other words, no
sequence may converge to two different limits.

w
J

Proof. Suppose {z,} is a convergent sequence which converges to
two different limits = # y. Then ¢ = %d(m,y) is positive, so there
exist integers N1, No such that

d(xn,z) <e foralln> Ny,
d(xn,y) < e forall n > Ns.

Setting N = max{/Ny, N2} for convenience, we conclude that
2e = d(x,y) < d(x,zn) + d(2n,y) <2

for all n > N. This is a contradiction, so the limit is unique. [ |
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(Theorem 1.4 — Main facts about closed sets \
L @ If a subset A C X is closed in X, then every sequence of points J

of A that converges must converge to a point of A.

Proof. Let {z,,} be a sequence of points of A that converges and
let x be its limit. Suppose x € X — A. Since X — A is open, there
exists some € > 0 such that B(z,e) C X — A. Since z,, converges
to x, there also exists an integer N such that

xn € B(xz,e) foralln > N.

This implies x,, € X — A for all n > N, which is contrary to the fact
that x,, € A for all n € N. In particular, we must have x € A. [ |
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(Theorem 1.4 — Main facts about closed sets w
® Both @ and X are closed in X.

©® Finite unions of closed sets are closed.

@ Arbitrary intersections of closed sets are closed.

Proof. First, we prove @. Since the sets &, X are both open in X,
their complements X, @ are both closed in X.

To prove @ and @, one needs to use De Morgan's laws

n n

x-Ju=Nx-u), X- ﬂU UX U;).

i=1 i=1

For instance, consider finitely many sets U; which are closed in X.
Their complements X — U; are then open in X, so the same is true
for their intersection. Using the first De Morgan's law, we conclude
that the union of the sets U; is closed in X. This proves € and one
may similarly prove @ using the second De Morgan’s law. |
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(Theorem 1.5 — Composition of continuous functions

Suppose f: X — Y and g: Y — Z are continuous functions between
metric spaces. Then the composition go f: X — Z is continuous.

Proof. We show that g o f is continuous at any x € X. Let € > 0
be given. Since g is continuous at f(z), there exists § > 0 with

dy(f(z),y) <0 = dz(9(f(2)),9(y)) <e.
Since f is continuous at z, there also exists 6’ > 0 with
dx(z,2') <§ = dy(f(z), f(2))) <é.
Once we now combine the last two equations, we find that
dx(z,2") <&’ = dz(9(f(2)),9(f(2"))) <e.

This shows that the composition g o f is continuous at x. |
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(Theorem 1.6 — Continuity and sequences

Suppose f: X — Y is a continuous function between metric spaces
and let {z,,} be a sequence of points of X which converges to = € X.
Then the sequence {f(z,)} must converge to f(x).

Proof. Let € > 0 be given. Then there exists some § > 0 such that
dx(z,y) <6 == dy(f(z),f(y)) <e.
Since x,, converges to x, there also exists an integer IV such that
dx(zp,x) <6 forallm > N.
Once we now combine the last two equations, we find that
dy (f(zy), f(x)) <e forallm > N.

This shows that f(x,) converges to f(x), as needed. |
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Theorem 1.7 — Continuity and open sets

L

A function f: X — Y between metric spaces is continuous if and onIyJ

if f~1(U) is open in X for each set U which is open in Y.

Proof. First, suppose f is continuous and let U be open in Y. To
show that f~1(U) is open, let x € f~1(U). Then f(x) € U and so
there exists € > 0 such that B(f(z),e) C U. By continuity, there
also exists § > 0 such that

y€ Bx,0) = [fy) € B(f(z)e). (%)

This implies that B(x,8) C f~1(U) and so f~1(U) is open.

Conversely, suppose f~1(U) is open in X for each set U which is
openinY. Let z € X and € > 0 be given. Setting U = B(f(x),¢),
we find that f~1(U) is open in X. This gives B(z,d) C f~1(U) for
some § > 0, so the definition () of continuity holds. |
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(Theorem 1.8 — Main facts about Lipschitz continuity

NN

k @ Every Lipschitz continuous function is continuous.

Proof. Suppose f: X — Y is a Lipschitz continuous function. To
show that f is continuous at all points z € X, let ¢ > 0 be given.
Since f is Lipschitz continuous, we have

dy (f(z), f(y)) < L-dx(z,y)
for some L > 0. When L > 0, we can take § = ¢/L to find that

dx(z,y) <0 = dy(f(z),f(y)) < L-dx(z,y)
= dy(f(2), f(y) <L-d=e

When L = 0, one always has dy (f(z), f(y)) <0 < ¢, so the choice
of § is irrelevant. Thus, f is continuous at x in any case. [
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(Theorem 1.8 — Main facts about Lipschitz continuity w
L @ |If a function f: [a,b] — R is differentiable and its derivative is J

bounded, then f is Lipschitz continuous on [a, b].

Proof. Suppose |f'(z)| < M for all z € [a,b] and let 2,y € [a, b] be
arbitrary. Using the mean value theorem, we can then write

[f (@) = fW)] = 1f'()] - |z —y]
for some ¢ between x and y. This obviously gives
[fl@) = fWI <M |z —y|

for all z,y € [a,b] and so f is Lipschitz continuous on [a, b)]. |
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(Theorem 1.9 — Pointwise and uniform convergence

@ To say that f,(z) — f(z) pointwise is to say that

|fn(x) — f(x)] = 0 asn — oo.

Proof. By definition, to say that f,(x) — f(x) pointwise is to say
that, given any € > 0 there exists an integer N such that

|fn(z) — f(x)] <& foralln>N.

This is the case if and only if | f,(z) — f(z)] — 0 as n — oc. |
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(Theorem 1.9 — Pointwise and uniform convergence

@ To say that f,, — f uniformly on X is to say that

sup | fn(z) = f(z)] = 0 asn — oo.
zeX

Proof. Let M, = sup,cx |fn(x) — f(z)| for convenience. Suppose
that M,, — 0 as n — oo and let € > 0 be given. Then there is an
integer N such that M,, < ¢ for all n > N, so we also have

[ful@) = f(2)] < My <&

for all n > N and all x € X. In particular, f,, — f uniformly on X.

Conversely, suppose f, — f uniformly on X and let ¢ > 0 be
given. Then there is an integer N such that |f,(z) — f(z)] < /2
for all n > N and all z € X. Taking the supremum over all z € X,
we get M,, <e/2 < e foralln> N, so M, — 0 as n — oo. [ |
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(Theorem 1.10 — Uniform limit of continuous functions

The uniform limit of continuous functions is continuous: if each f, is
continuous and f, — f uniformly on X, then f is continuous on X.

Proof. Let £ > 0 be given. Then there is an integer N such that
|fn(x) — f(x)] <e/3 forallm> N and all z € X.
Since fy is continuous at the point z, there exists § > 0 such that

d(z,y) <6 = |fn(z) = fa(y)l <e/3.

Suppose now that d(z,y) < §. Then the triangle inequality gives

|f(@) = f(y)| < |f(2) — fn ()]
+fn(@) = v+ [fn(y) — fy)] <e.

In particular, f is continuous at each point x € X, as needed. [ |
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(Theorem 1.11 — Convergent implies Cauchy

kln a metric space, every convergent sequence is a Cauchy sequence. J

Proof. Suppose that {z,} is a sequence which converges to = and
let € > 0 be given. Then there exists an integer N such that

d(zn,z) <e/2 foralln> N.
Using this fact and the triangle inequality, we conclude that
AT, ) < d(Tp, x) +d(x,2p) < €

for all m,n > N. This shows that the sequence is Cauchy. [ |
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(Theorem 1.12 — Cauchy implies bounded

N

tln a metric space, every Cauchy sequence is bounded.

Proof. Suppose {z,} is a Cauchy sequence in a metric space X.
Then there exists an integer N such that

d(xm,zn) <1 forallm,n> N.
Taking n = N, in particular, we find that
d(xm,xn) <1 forallm> N.

Thus, every term starting with the Nth term lies in the open ball of
radius 1 around . As for the other terms, we have

= <
R 1$§Nd(xm’x]v) =  d(xm,zN) <R

for all m < N. This implies that d(z;, zny) < R+ 1 for all . |
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(Theorem 1.13 — Cauchy sequence with convergent subsequence

N

Suppose (X, d) is a metric space and let {z,} be a Cauchy sequence
in X that has a convergent subsequence. Then {xz,} converges itself.

Proof. Suppose that {x,} is Cauchy and {x,,, } converges to z. We
claim that {x,} converges to x as well. Let ¢ > 0 be given. Then
there exist integers N1, No such that

d(Tpm,xn) < e/2 forall myn > Ny,
d(zp,,x) <e/2 forall ny > Ns.

Set N = max{Ny, Ny} and fix some ny > N. Then we have
d(zy, ) < d(xm, Tn,,) + d(2n,,z) <€

for all m > N and this implies that z,,, — x as m — oo. [ |
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(Theorem 1.14 — Completeness of R w

k @ Every sequence in R which is monotonic and bounded converges.

Proof. Suppose that {x,} is increasing and bounded, as the case
that {x,} is decreasing is similar. We claim that a = sup z,, is the
limit of the sequence. Let € > 0 be given. Since o — ¢ is less than
the least upper bound, there exists a term xx such that

a—e<zy < a.

Since the sequence {x,} is increasing, this actually gives
a—e<xy, <«

for all n > N. In particular, |z, — o] = a —x, <eforalln >N

and this implies that z,, — o as n — oo. |
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(Theorem 1.14 — Completeness of R w

@ Bolzano-Weierstrass theorem: Every bounded sequence in R
has a convergent subsequence.

Proof. Suppose {x,} is a bounded sequence. We say that xj is a
peak point, if all subsequent terms are smaller than ;. Let us now
consider two cases. If there are infinitely many peak points, then
there is a subsequence x,,,%n,, Tps,... consisting of peak points
and this is decreasing, hence also convergent.

Otherwise, there are finitely many peak points. Choose N large
enough so that zp, is not a peak point. Then there is a subsequent
term xn, which is larger. Since xy, is not a peak point, there is a
further term which is even larger. Proceeding in this way, we obtain
a subsequence which is increasing, hence also convergent. |
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(Theorem 1.14 — Completeness of R

NN

k ©® The set R of all real numbers is a complete metric space.

Proof. Suppose that {z,} is a Cauchy sequence in R. Then it is
also bounded, so it has a convergent subsequence by part @. Using
Theorem 1.13, we conclude that {z, } converges itself. This shows
that every Cauchy sequence in R converges, so R is complete. W
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(Theorem 1.15 — Examples of complete metric spaces

N

k @ The space R¥ is complete with respect to its usual metric.

Proof. Let x, = (Zn1,Zn2,...,2,:) be a Cauchy sequence in R¥
and let € > 0 be given. Each z,; forms a Cauchy sequence in R, as

k
|xmi - xni|2 < Z |xmi - xni|2 = dQ(wmywn)Q-
i=1

Let z; be the limit of x,; as n — oo. Then there is an integer N
such that |z,; — z;| < €/Vk for all n > N and each 1 < i < k.
Once we now set © = (z1,x9,...,xx), we find that

dao(Ty, x Z\xm xz|2<252/k—€

for all n > N. Thus, x,, is convergent and so RF is complete. [ |
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(Theorem 1.15 — Examples of complete metric spaces

k @ The space Cla,b] is complete with respect to the dy metric. J

Proof. Suppose that {f,} is a Cauchy sequence in C[a,b]. Given
any ¢ > 0, we can then find an integer IV such that

|fm(z) = fn(x)] <e/2 forall m,n> N and all z € [a,].

Thus, {fn(x)} is a Cauchy sequence in R for each = € [a, b]. Denote
the limit of this sequence by f(z). Letting m — oo, we get

|f(x) = fu(x)] <e/2 foralln> N and all x € [a,].

Taking the supremum over all = € [a, b] now gives doo(f, fr) < € for
all n > N. This shows that ds(f, fn) — 0 as n — oo which also
means that f,, — f uniformly on [a,b]. Since f is the uniform limit
of continuous functions, f is continuous as well. [ |
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(Theorem 1.16 — Subsets of a complete metric space

LSuppose (X,d) is a complete metric space and let A C X. Then A isJ

complete if and only if A is closed in X.

Proof. First, suppose A C X is closed and let {z,,} be a Cauchy
sequence in A. This sequence converges in X by completeness. In
view of Theorem 1.4, the limit of the sequence lies in A. That is,
the Cauchy sequence converges in A and so A is complete.

Conversely, suppose A C X is complete. To show that X — A
is open, let z € X — A and consider the open balls B(z,1/n) for
each n € N. If one of those lies entirely in X — A, then X — A is
open and the proof is complete. Otherwise, each B(z,1/n) must
contain a point x,, € A. Noting that d(x,,x) < 1/n for each n, we
see that {z,,} converges to x € X — A. This contradicts our initial
assumption that the subset A is complete. |
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(Theorem 1.17 — Banach'’s fixed point theorem w
Llf f: X — X is a contraction on a complete metric space X, then fJ

has a unique fixed point, namely a unique point z with f(z) = x.

Proof, part 1. First, we prove uniqueness. Suppose that = # y are
both fixed points. Since f is a contraction, we then have

for some 0 < o < 1. This leads to the contradiction o« > 1.

It remains to show existence. Let z € X be arbitrary and define
a sequence by setting 1 = x and z,+1 = f(z,) for each n > 1. If
this sequence is actually Cauchy, then it converges by completeness
and its limit y is a fixed point of f because

y= lim z, = f(y)= lim f(z,)= lim z,41 =yv.
n—oo n—oo n—o0
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(Theorem 1.17 — Banach'’s fixed point theorem

L

has a unique fixed point, namely a unique point z with f(z) = x.

If f: X — X is a contraction on a complete metric space X, then fJ

Proof, part 2. It remains to show that our sequence is Cauchy.
Since f is a contraction and z,4+1 = f(x,) for each n, we have

d(l'na :L'n-l—k) < d(i‘n, xn—l—l) +...+ d(xn-‘rk—l» xn—i—k)
n+k—1 n+k—1

E d(xi, i) < E al” d(x1,x2)

an—l
<Za d(w1,72) = 1o

~d(x1,x39).

The right hand side goes to zero as n — oo, so the same is true for
the left hand side. This shows that our sequence is Cauchy. [
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/Theorem 1.18 — Existence and uniqueness of solutions

Consider an initial value problem of the form

y'(t) = fty(t),  y(0)=wo.

If f is continuous in ¢ and Lipschitz continuous in y, then there exists
a unique solution y(t) which is defined on [0, ¢] for some € > 0.

/

Proof, part 1. It is easy to see that y(t) is a solution if and only if

y(t) = o +/0 f(s,y(s))ds.

Let us denote the right hand side by A(y(t)). Then every solution
corresponds to a fixed point of A, so it suffices to show that A is a
contraction on a complete metric space X. In fact, X = C[0,¢] is
complete with respect to the dy, metric for any € > 0.
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KTheorem 1.18 — Existence and uniqueness of solutions R

Consider an initial value problem of the form

y'(t) = fty(t),  y(0)=wo.

If f is continuous in ¢t and Lipschitz continuous in y, then there exists
L2 unique solution y(t) which is defined on [0, €] for some £ > 0.

/

Proof, part 2. To show that A is a contraction, we note that

| £(s,5() = f(s,2(5))| < Ly(s) = 2(s)| < Ldoo(y, 2).

Fix some 0 < e < 1/L and let y(t), z(t) € C[0,g]. We then have

Ay (t) — A=())] < Ldooly, 2) /0 ds < eLdu(y, 2)

for all t € [0,¢] and this implies that A is a contraction, indeed. W
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(Theorem 1.19 — Completion of a metric space

L

Given a metric space (X, d), there exist a metric space (X', d’) and aJ

distance preserving map f: X — X’ such that X’ is complete.

Proof, part 1. Suppose {z,,} and {y,} are two Cauchy sequences
in X. Using the triangle inequality, one easily finds that

( ) + d($m> ym) + d(ymy yn)
(xma fL'n) + d(l'm yn) + d(ym ym)

d(xn, yn)

<d

Rearranging terms, we now combine these equations to get

’d(xna yn) - d(xma ym)‘ < d(IL’n, xm) + d(yma yn)’

This implies that the sequence of real numbers {d(z,,y,)} is also
Cauchy, so this sequence must converge by completeness. We now
use this fact to define the completion X’ of the metric space X.
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(Theorem 1.19 — Completion of a metric space

Given a metric space (X, d), there exist a metric space (X', d’') and a
distance preserving map f: X — X’ such that X’ is complete.

Proof, part 2. Consider the set of all Cauchy sequences in X. One
may define a relation on this set by setting

{xn} ~{yn} = li_)m d(xpn,yn) = 0.

This relation is clearly reflexive and symmetric. To see that it is also
transitive, suppose that {z,,} ~ {y,} and {y,} ~ {z,}. Since

0< d(xm Zn) < d(xmyn) + d(ym Zn)a

it easily follows that {z,} ~ {z,} as well. This means that ~ is
an equivalence relation on the set of Cauchy sequences in X. Let
us denote by X’ the set of all equivalence classes. We now define a
metric d’ on X’ and a distance preserving map f: X — X'.
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(Theorem 1.19 — Completion of a metric space

L

distance preserving map f: X — X’ such that X’ is complete.

Given a metric space (X, d), there exist a metric space (X', d’) and aJ

Proof, part 3. One may define a metric on X’ by letting

d/([an [yn]) = lim d(xmyn)

n—oo

Suppose that {z,,} ~ {an} and {y,} ~ {bn}. Using the inequalities

( xn) + d(xna yn) + d(yna bn)a

d(ana bn) Qnp,
(xna an) + d(ana bn) + d(bn7 yn)a

<d
d(@n,yn) < d
we see that d(ay,b,) and d(x,,y,) have the same limit as n — oo.
Thus, d' is well-defined. Since each x € X gives rise to a constant
sequence, one may also define f: X — X' by f(z) = [z]. Then fis
distance preserving, so it remains to show that X’ is complete.
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(Theorem 1.19 — Completion of a metric space

L

Given a metric space (X, d), there exist a metric space (X', d’) and aJ

distance preserving map f: X — X’ such that X’ is complete.

Proof, part 4. A Cauchy sequence in X' has the form {[z}]}°,,
where {z%} is a Cauchy sequence in X for each i. In particular, we
can find an integer IN; for each i such that

d(zt, x') < 1/i forall m,n > N;.

Consider the sequence {y,} defined by y, = 2%, . Then we have

n

d(Ym, Yn) = d(:E]me an)
< d(z,,, zy') + d(z),', zy) + dzy, 2,

for all m,n,p and this implies that {y,} is Cauchy. Once we now
show that [z%] — [y,] as i — oo, the completeness of X’ will follow.
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(Theorem 1.19 — Completion of a metric space

Given a metric space (X, d), there exist a metric space (X’,d’) and a
distance preserving map f: X — X’ such that X’ is complete.

Proof, part 5. We now show that [z] — [y,] as i — co. Let € > 0
be given and recall that {y,} is a Cauchy sequence with y, = 2§ .
In particular, there exists an integer N such that

d(yi,yn) <e/3 foralli,n > N.
When i > max{N,3/e} and n > max{N;, N}, we must then have

Azl yn) < d(xh,yi) + d(yi, yn)
= d(x},, zy,) + d(Yi, yn)
<1/i+¢/3 < 2¢/3.

Thus, [2%] — [ys] as i — oo and the proof is finally complete. W
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