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The definition of a norm

Definition – Norm

Suppose X is a vector space over the field F = R or F = C. A norm

on X is a real-valued function ||x|| with the following properties.

1 Zero vector: ||x|| = 0 if and only if x = 0.

2 Scalar factors: ||λx|| = |λ| · ||x|| for all λ ∈ F and all x ∈ X.

3 Triangle inequality: ||x+ y|| ≤ ||x||+ ||y|| for all x,y ∈ X.

A normed vector space (X, || · ||) consists of a vector space X and a

norm ||x||. One generally thinks of ||x|| as the length of x.

It is easy to check that every norm satisfies ||x|| ≥ 0 for all x ∈ X.

Every normed vector space (X, || · ||) is also a metric space (X, d), as
one may define a metric d using the formula d(x,y) = ||x− y||. This
particular metric is said to be induced by the norm.
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Examples of normed vector spaces

Given any p ≥ 1, we can define a norm on R
k by letting

||x||p =

[

k
∑

i=1

|xi|
p

]1/p

.

The space C[a, b] has a similar norm for any p ≥ 1, namely

||f ||p =

[
∫ b

a
|f(x)|p dx

]1/p

.

There is also a norm on R
k for the case p = ∞. It is defined by

||x||∞ = max
1≤i≤k

|xi|.

Finally, there is a similar norm on C[a, b] which is given by

||f ||∞ = max
a≤x≤b

|f(x)|.
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Sequence spaces ℓp

The space ℓp consists of all real sequences x = {xn} such that

∞
∑

n=1

|xn|
p < ∞.

It is a normed vector space for any p ≥ 1 and its norm is given by

||x||p =

[

∞
∑

n=1

|xn|
p

]1/p

.

The space ℓ∞ consists of all bounded real sequences x = {xn}. It is
a normed vector space and its norm is given by

||x||∞ = sup
n≥1

|xn|.

The space c0 consists of all real sequences {xn} which converge to 0.
It is easily seen to be a subspace of ℓ∞.
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Continuity of operations

Theorem 3.1 – Product norm

Suppose X,Y are normed vector spaces. Then one may define a norm

on the product X × Y by letting ||(x,y)|| = ||x||+ ||y||.

Theorem 3.2 – Continuity of operations

The following functions are continuous in any normed vector space X.

1 The norm f(x) = ||x||, where x ∈ X.

2 The vector addition g(x,y) = x+ y, where x,y ∈ X.

3 The scalar multiplication h(λ,x) = λx, where λ ∈ F and x ∈ X.

We shall mainly use this theorem to justify computations such as

lim
n→∞

||xn|| =
∣

∣

∣

∣

∣

∣
lim
n→∞

xn

∣

∣

∣

∣

∣

∣
.
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Bounded linear operators

Definition – Bounded, linear, continuous

Let X,Y be normed vector spaces over the field F = R or F = C.

1 A function T : X → Y is called a linear operator, if

T (x+ y) = T (x) + T (y), T (λx) = λT (x)

for all x,y ∈ X and all scalars λ ∈ F.

2 A function T : X → Y is called bounded, if there exists a real

number M > 0 such that ||T (x)|| ≤ M ||x|| for all x ∈ X.

3 A function T : X → Y is called continuous, if it is continuous

with respect to the metrics which are induced by the norms.

A linear operator is also known as a linear transformation.

By definition, every linear operator T is such that T (0) = 0.
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Bounded means continuous

Theorem 3.3 – Bounded means continuous

Suppose X,Y are normed vector spaces and let T : X → Y be linear.

Then T is continuous if and only if T is bounded.

Theorem 3.4 – Norm of an operator

Suppose X,Y are normed vector spaces. Then the set L(X,Y ) of all
bounded, linear operators T : X → Y is itself a normed vector space.

In fact, one may define a norm on L(X,Y ) by letting

||T || = sup
x 6=0

||T (x)||

||x||
.

It is easy to check that ||T (x)|| ≤ ||T || · ||x|| for all x ∈ X.

One also has ||S ◦ T || ≤ ||S|| · ||T || whenever S, T ∈ L(X,X).
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Norm of an operator: Example 1

Consider the right shift operator R : ℓp → ℓp which is defined by

R(x1, x2, x3, . . .) = (0, x1, x2, . . .).

This operator is easily seen to be linear and we also have

||R(x)||p = ||x||p for all x ∈ ℓp.

In particular, the norm of this operator is equal to ||R|| = 1.

The left shift operator L : ℓp → ℓp is similarly defined by

L(x1, x2, x3, . . .) = (x2, x3, x4, . . .).

Since ||L(x)||p ≤ ||x||p for all x ∈ ℓp, we find that ||L|| ≤ 1. On the

other hand, we also have ||L(x)||p = ||x||p whenever x1 = 0 and this

implies that ||L|| ≥ 1. We may thus conclude that ||L|| = 1.
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Norm of an operator: Example 2

Suppose that T : (Rn, || · ||1) → (Rm, || · ||∞) is left multiplication by

the m× n matrix A. We then have

||T (x)||∞ = max
i

∣

∣

∣

∣

∣

∣

∑

j

aijxj

∣

∣

∣

∣

∣

∣

≤ max
i,j

|aij | ·
∑

j

|xj |

= max
i,j

|aij | · ||x||1

and this implies that ||T || ≤ maxi,j |aij |.

On the other hand, the standard unit vector x = ej satisfies

||T (x)||∞
||x||1

= max
i

∣

∣

∣

∣

∣

∣

∑

j

aijxj

∣

∣

∣

∣

∣

∣

= max
i

|aij |,

so we also have ||T || ≥ maxi |aij | for each j. We conclude that

||T || = max
i,j

|aij |.
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Finite-dimensional vector spaces

Suppose that X is a vector space with basis x1,x2, . . . ,xk. Then

every element x ∈ X can be expressed as a linear combination

x = c1x1 + c2x2 + . . .+ ckxk

for some uniquely determined coefficients c1, c2, . . . , ck ∈ F.

Theorem 3.5 – Euclidean norm

Suppose that X is a vector space with basis x1,x2, . . . ,xk. Then one

may define a norm on X using the formula

x =
k

∑

i=1

cixi =⇒ ||x||2 =

√

√

√

√

k
∑

i=1

|ci|2.

This norm is also known as the Euclidean or standard norm on X.
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Equivalent norms

Definition – Equivalent norms

We say that two norms || · ||a and || · ||b of a normed vector space X
are equivalent, if there exist constants C1, C2 > 0 such that

C1||x||a ≤ ||x||b ≤ C2||x||a for all x ∈ X.

Theorem 3.6 – Equivalence of all norms

The norms of a finite-dimensional vector space X are all equivalent.

The norms || · ||1 and || · ||∞ are not equivalent in C[a, b] because this

space is complete with respect to only one of the two norms.

In fact, || · ||p and || · ||q are not equivalent in C[0, 1] when p < q. To
prove this, one may define fn(x) = xn for each n ∈ N and then check

that the quotient ||fn||q/||fn||p is unbounded as n → ∞.
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Banach spaces

Definition – Banach space

A Banach space is a normed vector space which is also complete with

respect to the metric induced by its norm.

Theorem 3.7 – Examples of Banach spaces

1 Every finite-dimensional vector space X is a Banach space.

2 The sequence space ℓp is a Banach space for any 1 ≤ p ≤ ∞.

3 The space c0 is a Banach space with respect to the || · ||∞ norm.

4 If Y is a Banach space, then L(X,Y ) is a Banach space.

The space C[a, b] is a Banach space with respect to the || · ||∞ norm.

It is not complete with respect to the || · ||p norm when 1 ≤ p < ∞.

Suppose that X is a Banach space and let Y be a subspace of X.

Then Y is itself a Banach space if and only if Y is closed in X.
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Convergence of series

Definition – Convergence of series

Suppose that {xn} is a sequence in a normed vector space X. We say

that the series
∑∞

n=1
xn converges, if the partial sum sN =

∑N
n=1

xn

converges as N → ∞. If that is the case, then we denote its limit by

lim
N→∞

sN = lim
N→∞

N
∑

n=1

xn =
∞
∑

n=1

xn.

We say that
∑∞

n=1
xn converges absolutely, if

∑∞
n=1

||xn|| converges.

Theorem 3.8 – Absolute convergence implies convergence

Suppose that X is a Banach space and let
∑∞

n=1
xn be a series which

converges absolutely in X. Then this series must also converge.

13 / 15



Invertible linear operators

Definition – Invertibility

A bounded linear operator T : X → X is called invertible, if there is a

bounded linear operator S : X → X such that S ◦ T = T ◦ S = I is

the identity operator on X. If such an operator S exists, then we call

it the inverse of T and we denote it by T−1.

Theorem 3.9 – Geometric series

Suppose that T : X → X is a bounded linear operator on a Banach

space X. If ||T || < 1, then I − T is invertible with inverse
∑∞

n=0
Tn.

Theorem 3.10 – Set of invertible operators

Suppose X is a Banach space. Then the set of all invertible bounded

linear operators T : X → X is an open subset of L(X,X).
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Dual space

Definition – Dual space

Suppose X is a normed vector space over R. Its dual X∗ is then the

set of all bounded linear operators T : X → R, namely X∗ = L(X,R).

Theorem 3.11 – Dual of Rk

There is a bijective map T : Rk → (Rk)∗ that sends each vector a to

the bounded linear operator Ta defined by Ta(x) =
∑k

i=1
aixi.

Theorem 3.12 – Dual of ℓp

Suppose 1 < p < ∞ and let q = p/(p− 1). Then 1/p+ 1/q = 1 and

there is a bijective map T : ℓq → (ℓp)∗ that sends each sequence {an}
to the bounded linear operator Ta defined by Ta(x) =

∑∞
i=1

aixi.
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