Suppose X is a vector space over the field $F = \mathbb{R}$ or $F = \mathbb{C}$. A norm on X is a real-valued function $||x||$ with the following properties.

1. **Zero vector:** $||x|| = 0$ if and only if $x = 0$.
2. **Scalar factors:** $||\lambda x|| = |\lambda| \cdot ||x||$ for all $\lambda \in F$ and all $x \in X$.
3. **Triangle inequality:** $||x + y|| \leq ||x|| + ||y||$ for all $x, y \in X$.

A normed vector space $(X, || \cdot ||)$ consists of a vector space X and a norm $||x||$. One generally thinks of $||x||$ as the length of x.

It is easy to check that every norm satisfies $||x|| \geq 0$ for all $x \in X$.

Every normed vector space $(X, || \cdot ||)$ is also a metric space (X, d), as one may define a metric d using the formula $d(x, y) = ||x - y||$. This particular metric is said to be induced by the norm.
Examples of normed vector spaces

- Given any \(p \geq 1 \), we can define a norm on \(\mathbb{R}^k \) by letting
 \[
 \|x\|_p = \left[\sum_{i=1}^{k} |x_i|^p \right]^{1/p}.
 \]

- The space \(C[a, b] \) has a similar norm for any \(p \geq 1 \), namely
 \[
 \|f\|_p = \left[\int_a^b |f(x)|^p \, dx \right]^{1/p}.
 \]

- There is also a norm on \(\mathbb{R}^k \) for the case \(p = \infty \). It is defined by
 \[
 \|x\|_\infty = \max_{1 \leq i \leq k} |x_i|.
 \]

- Finally, there is a similar norm on \(C[a, b] \) which is given by
 \[
 \|f\|_\infty = \max_{a \leq x \leq b} |f(x)|.
 \]
The space ℓ^p consists of all real sequences $x = \{x_n\}$ such that

$$\sum_{n=1}^{\infty} |x_n|^p < \infty.$$

It is a normed vector space for any $p \geq 1$ and its norm is given by

$$\|x\|_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}.$$

The space ℓ^∞ consists of all bounded real sequences $x = \{x_n\}$. It is a normed vector space and its norm is given by

$$\|x\|_\infty = \sup_{n \geq 1} |x_n|.$$

The space c_0 consists of all real sequences $\{x_n\}$ which converge to 0. It is easily seen to be a subspace of ℓ^∞.
Theorem 3.1 – Product norm

Suppose X, Y are normed vector spaces. Then one may define a norm on the product $X \times Y$ by letting $||(x, y)|| = ||x|| + ||y||$.

Theorem 3.2 – Continuity of operations

The following functions are continuous in any normed vector space X.

1. The norm $f(x) = ||x||$, where $x \in X$.
2. The vector addition $g(x, y) = x + y$, where $x, y \in X$.
3. The scalar multiplication $h(\lambda, x) = \lambda x$, where $\lambda \in \mathbb{F}$ and $x \in X$.

We shall mainly use this theorem to justify computations such as

$$\lim_{n \to \infty} ||x_n|| = \left\| \lim_{n \to \infty} x_n \right\|.$$
Definition – Bounded, linear, continuous

Let \(X, Y \) be normed vector spaces over the field \(F = \mathbb{R} \) or \(F = \mathbb{C} \).

1. A function \(T: X \to Y \) is called a linear operator, if
 \[
 T(x + y) = T(x) + T(y), \quad T(\lambda x) = \lambda T(x)
 \]
 for all \(x, y \in X \) and all scalars \(\lambda \in F \).

2. A function \(T: X \to Y \) is called bounded, if there exists a real number \(M > 0 \) such that \(\|T(x)\| \leq M\|x\| \) for all \(x \in X \).

3. A function \(T: X \to Y \) is called continuous, if it is continuous with respect to the metrics which are induced by the norms.

- A linear operator is also known as a linear transformation.
- By definition, every linear operator \(T \) is such that \(T(0) = 0 \).
Theorem 3.3 – Bounded means continuous

Suppose X, Y are normed vector spaces and let $T : X \to Y$ be linear. Then T is continuous if and only if T is bounded.

Theorem 3.4 – Norm of an operator

Suppose X, Y are normed vector spaces. Then the set $L(X, Y)$ of all bounded, linear operators $T : X \to Y$ is itself a normed vector space. In fact, one may define a norm on $L(X, Y)$ by letting

$$
\|T\| = \sup_{x \neq 0} \frac{\|T(x)\|}{\|x\|}.
$$

- It is easy to check that $\|T(x)\| \leq \|T\| \cdot \|x\|$ for all $x \in X$.
- One also has $\|S \circ T\| \leq \|S\| \cdot \|T\|$ whenever $S, T \in L(X, X)$.
Consider the right shift operator $R: \ell^p \to \ell^p$ which is defined by

$$R(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, \ldots).$$

This operator is easily seen to be linear and we also have

$$\|R(x)\|_p = \|x\|_p \quad \text{for all } x \in \ell^p.$$

In particular, the norm of this operator is equal to $\|R\| = 1$.

The left shift operator $L: \ell^p \to \ell^p$ is similarly defined by

$$L(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots).$$

Since $\|L(x)\|_p \leq \|x\|_p$ for all $x \in \ell^p$, we find that $\|L\| \leq 1$. On the other hand, we also have $\|L(x)\|_p = \|x\|_p$ whenever $x_1 = 0$ and this implies that $\|L\| \geq 1$. We may thus conclude that $\|L\| = 1$.
Suppose that $T : (\mathbb{R}^n, \| \cdot \|_1) \to (\mathbb{R}^m, \| \cdot \|_\infty)$ is left multiplication by the $m \times n$ matrix A. We then have

$$
\|T(x)\|_\infty = \max_i \left| \sum_j a_{ij} x_j \right| \leq \max_{i,j} |a_{ij}| \cdot \sum_j |x_j|
$$

$$
= \max_{i,j} |a_{ij}| \cdot \|x\|_1
$$

and this implies that $\|T\| \leq \max_{i,j} |a_{ij}|$.

On the other hand, the standard unit vector $x = e_j$ satisfies

$$
\frac{\|T(x)\|_\infty}{\|x\|_1} = \max_i \left| \sum_j a_{ij} x_j \right| = \max_i |a_{ij}|
$$

so we also have $\|T\| \geq \max_i |a_{ij}|$ for each j. We conclude that

$$
\|T\| = \max_{i,j} |a_{ij}|.
$$
Finite-dimensional vector spaces

Suppose that X is a vector space with basis x_1, x_2, \ldots, x_k. Then every element $x \in X$ can be expressed as a linear combination

$$x = c_1x_1 + c_2x_2 + \ldots + c_kx_k$$

for some uniquely determined coefficients $c_1, c_2, \ldots, c_k \in \mathbb{F}$.

Theorem 3.5 – Euclidean norm

Suppose that X is a vector space with basis x_1, x_2, \ldots, x_k. Then one may define a norm on X using the formula

$$x = \sum_{i=1}^{k} c_i x_i \implies \|x\|_2 = \sqrt{\sum_{i=1}^{k} |c_i|^2}.$$

This norm is also known as the Euclidean or standard norm on X.
Equivalent norms

Definition – Equivalent norms

We say that two norms $\| \cdot \|_a$ and $\| \cdot \|_b$ of a normed vector space X are equivalent, if there exist constants $C_1, C_2 > 0$ such that

$$C_1 \| \mathbf{x} \|_a \leq \| \mathbf{x} \|_b \leq C_2 \| \mathbf{x} \|_a \quad \text{for all } \mathbf{x} \in X.$$

Theorem 3.6 – Equivalence of all norms

The norms of a finite-dimensional vector space X are all equivalent.

- The norms $\| \cdot \|_1$ and $\| \cdot \|_{\infty}$ are not equivalent in $C[a, b]$ because this space is complete with respect to only one of the two norms.

- In fact, $\| \cdot \|_p$ and $\| \cdot \|_q$ are not equivalent in $C[0, 1]$ when $p < q$. To prove this, one may define $f_n(x) = x^n$ for each $n \in \mathbb{N}$ and then check that the quotient $\| f_n \|_q / \| f_n \|_p$ is unbounded as $n \to \infty$.

Banach spaces

<table>
<thead>
<tr>
<th>Definition – Banach space</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Banach space is a normed vector space which is also complete with respect to the metric induced by its norm.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem 3.7 – Examples of Banach spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Every finite-dimensional vector space X is a Banach space.</td>
</tr>
<tr>
<td>2. The sequence space ℓ^p is a Banach space for any $1 \leq p \leq \infty$.</td>
</tr>
<tr>
<td>3. The space c_0 is a Banach space with respect to the $| \cdot |_\infty$ norm.</td>
</tr>
<tr>
<td>4. If Y is a Banach space, then $L(X, Y)$ is a Banach space.</td>
</tr>
</tbody>
</table>

- The space $C[a, b]$ is a Banach space with respect to the $\| \cdot \|_\infty$ norm. It is not complete with respect to the $\| \cdot \|_p$ norm when $1 \leq p < \infty$.
- Suppose that X is a Banach space and let Y be a subspace of X. Then Y is itself a Banach space if and only if Y is closed in X.
Convergence of series

Definition – Convergence of series

Suppose that \(\{x_n\} \) is a sequence in a normed vector space \(X \). We say that the series \(\sum_{n=1}^{\infty} x_n \) converges, if the partial sum \(s_N = \sum_{n=1}^{N} x_n \) converges as \(N \to \infty \). If that is the case, then we denote its limit by

\[
\lim_{N \to \infty} s_N = \lim_{N \to \infty} \sum_{n=1}^{N} x_n = \sum_{n=1}^{\infty} x_n.
\]

We say that \(\sum_{n=1}^{\infty} x_n \) converges absolutely, if \(\sum_{n=1}^{\infty} \|x_n\| \) converges.

Theorem 3.8 – Absolute convergence implies convergence

Suppose that \(X \) is a Banach space and let \(\sum_{n=1}^{\infty} x_n \) be a series which converges absolutely in \(X \). Then this series must also converge.
Definition – Invertibility

A bounded linear operator $T: X \to X$ is called invertible, if there is a bounded linear operator $S: X \to X$ such that $S \circ T = T \circ S = I$ is the identity operator on X. If such an operator S exists, then we call it the inverse of T and we denote it by T^{-1}.

Theorem 3.9 – Geometric series

Suppose that $T: X \to X$ is a bounded linear operator on a Banach space X. If $\|T\| < 1$, then $I - T$ is invertible with inverse $\sum_{n=0}^{\infty} T^n$.

Theorem 3.10 – Set of invertible operators

Suppose X is a Banach space. Then the set of all invertible bounded linear operators $T: X \to X$ is an open subset of $L(X, X)$.
Definition – Dual space

Suppose X is a normed vector space over \mathbb{R}. Its dual X^* is then the set of all bounded linear operators $T : X \to \mathbb{R}$, namely $X^* = L(X, \mathbb{R})$.

Theorem 3.11 – Dual of \mathbb{R}^k

There is a bijective map $T : \mathbb{R}^k \to (\mathbb{R}^k)^*$ that sends each vector a to the bounded linear operator T_a defined by $T_a(x) = \sum_{i=1}^k a_i x_i$.

Theorem 3.12 – Dual of ℓ^p

Suppose $1 < p < \infty$ and let $q = p/(p - 1)$. Then $1/p + 1/q = 1$ and there is a bijective map $T : \ell^q \to (\ell^p)^*$ that sends each sequence $\{a_n\}$ to the bounded linear operator T_a defined by $T_a(x) = \sum_{i=1}^\infty a_i x_i$.