Chapter 2. Topological spaces

Lecture notes for MA2223

P. Karageorgis

pete@maths.tcd.ie

1/20



Topological space

/Definition — Topology A

A topology T on a set X is a collection of subsets of X such that

@ The topology T' contains both the empty set @ and X.
® Every union of elements of T" belongs to T'.

9 ©® Every finite intersection of elements of T belongs to T

@ A topological space (X, T) consists of a set X and a topology T.

e Every metric space (X, d) is a topological space. In fact, one may
define a topology to consist of all sets which are open in X. This
particular topology is said to be induced by the metric.

@ The elements of a topology are often called open. This terminology
may be somewhat confusing, but it is quite standard. To say that a
set U is open in a topological space (X,T) is to say that U € T..
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Examples of topological spaces

@ The discrete topology on a set X is defined as the topology which
consists of all possible subsets of X.

@ The indiscrete topology on a set X is defined as the topology which
consists of the subsets @ and X only.

e Every metric space (X, d) has a topology which is induced by its
metric. It consists of all subsets of X which are open in X.

( Definition — Metrisable space w

A topological space (X, T) is called metrisable, if there exists a metric
on X such that the topology T is induced by this metric.

@ The discrete topology on X is metrisable and it is actually induced by
the discrete metric. On the other hand, the indiscrete topology on X
is not metrisable, if X has two or more elements.
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Convergence of sequences

( Definition — Convergence

Let (X,T) be a topological space. A sequence {x,} of points of X
is said to converge to the point z € X if, given any open set U that
contains x, there exists an integer N such that x, € U for all n > N.

@ When a sequence {z,} converges to a point x, we say that z is the
limit of the sequence and we write z,, — = as n — oo or simply

lim z, = z.
n—oo

@ When X is a metric space, this new definition of convergence agrees
with the definition of convergence in metric spaces.

(Theorem 2.1 — Limits are not necessarily unique

LSuppose that X has the indiscrete topology and let x € X. Then theJ

constant sequence x,, = x converges to y for every y € X.
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Closed sets

\

4 Definition — Closed set

Suppose (X, T) is a topological space and let A C X. We say that A
is closed in X, if its complement X — A is open in X.

- /

~

/Theorem 2.2 — Main facts about closed sets

@ If a subset A C X is closed in X, then every sequence of points
of A that converges must converge to a point of A.

® Both @ and X are closed in X.
© Finite unions of closed sets are closed.

O Arbitrary intersections of closed sets are closed.

- /

@ We have already established these statements for metric spaces and
our proofs apply almost verbatim in the case of topological spaces.
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Closure of a set

(" Definition — Closure

Suppose (X, T) is a topological space and let A C X. The closure A
of A is defined as the smallest closed set that contains A. It is thus
the intersection of all closed sets that contain A.

e The interval A =[0,1) has closure A = [0, 1].
o The interval A = (0,1) has closure A = [0, 1].

/Theorem 2.3 — Main facts about the closure N
® One has A C A for any set A.
® If AC B, then A C B as well.
© The set A is closed if and only if A = A.

9 © The closure of A is itself, namely A=A Y
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Interior of a set

( Definition — Interior

Suppose (X, T) is a topological space and let A C X. The interior A°
of A is defined as the largest open set contained in A. It is thus the
union of all open sets contained in A.

@ The interval A = [0, 1] has interior A° = (0, 1).
@ The interval A =0, 1) has interior A° = (0, 1).

/Theorem 2.4 — Main facts about the interior )
@ One has A° C A for any set A.
® If AC B, then A° C B° as well.
® The set A is open if and only if A° = A.

9 @ The interior of A° is itself, namely (A°)° = A°. )
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Boundary of a set

~

4 Definition — Boundary

Suppose (X, T) is a topological space and let A C X. The boundary

of A is defined as the set 94 = AN X — A.

- /

~

(" Definition — Neighbourhood

Suppose (X, T) is a topological space and let x € X be an arbitrary

\point. A neighbourhood of x is simply an open set that contains z. )

/Theorem 2.5 — Characterisation of closure/interior/boundary

Suppose (X, T) is a topological space and let A C X.
® v € A <= every neighbourhood of x intersects A.
® r € A° < some neighbourhood of x lies within A.

® r € 0A <= every neighbourhood of x intersects A and X — A.

- /
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Interior, closure and boundary: examples

(Theorem 2.6 — Interior, closure and boundary w
kOne has A°N0A = @ and also A° UJA = A for any set A. J
Set Interior Closure | Boundary
{1} Z {1} {1}
[0,1) (0,1) [0, 1] {0,1}
(0,1)U(1,2) | (0,1)U(1,2) [0, 2] {0,1,2}
[0,1] U {2} (0,1) [0,1]u{2}| {0,1,2}
Z %) Z Z
Q @ R R
R R R %)
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Limit points

~

(" Definition — Limit point

Let (X,T) be a topological space and let A C X. We say that z is
a limit point of A if every neighbourhood of x intersects A at a point
\other than z. )

/Theorem 2.7 — Limit points and closure h

Let (X,T) be a topological space and let A C X. If A" is the set of
\all limit points of A, then the closure of A is A=AUA.

/

@ Intuitively, limit points of A are limits of sequences of points of A.
o Theset A= {1/n:n € N} has only one limit point, namely z = 0.
@ Every point of A =(0,1) is a limit point of A, while A" = [0, 1].

@ A set is closed if and only if it contains its limit points.
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Continuity in topological spaces

\

/Definition — Continuity

A function f: X — Y between topological spaces is called continuous

\if f~1(U) is open in X for each set U which is open in Y. )

\

/Theorem 2.8 — Composition of continuous functions

Suppose f: X — Y and g: Y — Z are continuous functions between
\topological spaces. Then the composition go f: X — Z is continuous.

/Theorem 2.9 — Continuity and sequences )

Let f: X — Y be a continuous function between topological spaces
and let {x,,} be a sequence of points of X which converges to z € X.
\Then the sequence {f(x,)} must converge to f(x).

/
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Subspace topology

(" Definition — Subspace topology )
Let (X,T") be a topological space and let A C X. Then the set
T'={UNA:UeT}
\forms a topology on A which is known as the subspace topology.
~

/Theorem 2.10 - Inclusion maps are continuous

Let (X,T') be a topological space and let A C X. Then the inclusion

(_map i: A — X which is defined by i(z) = x is continuous.

/Theorem 2.11 — Restriction maps are continuous

%
~

Let f: X — Y be a continuous function between topological spaces
and let A C X. Then the restriction map g: A — Y which is defined
by g(x) = f(z) is continuous. This map is often denoted by g = f|4.

- /
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Product topology

~

(" Definition — Product topology

Given two topological spaces (X, T) and (Y, T"), we define the product
topology on X x Y as the collection of all unions |J, U; x V;, where

each U; is open in X and each V; is open in Y. )

\

/Theorem 2.12 — Projection maps are continuous

Let (X,T) and (Y,T") be topological spaces. If X x Y is equipped
with the product topology, then the projection map p1: X XY — X
defined by pi(z,y) = x is continuous. Moreover, the same is true for

\the projection map p2: X XY — Y defined by pa(x,y) = v. )

~

/Theorem 2.13 — Continuous map into a product space

Let X, Y, Z be topological spaces. Then a function f: Z — X X Y is
continuous if and only if its components p; o f, ps o f are continuous.

%
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Hausdorff spaces

( Definition — Hausdorff space

We say that a topological space (X,T) is Hausdorff if any two distinct
points of X have neighbourhoods which do not intersect.

o If a space X has the discrete topology, then X is Hausdorff.

o If a space X has the indiscrete topology and it contains two or more
elements, then X is not Hausdorff.

/Theorem 2.14 — Main facts about Hausdorff spaces R

@ Every metric space is Hausdorff.
® Every subset of a Hausdorff space is Hausdorff.
© Every finite subset of a Hausdorff space is closed.

@ The product of two Hausdorff spaces is Hausdorff.

® A convergent sequence in a Hausdorff space has a unique limit.

- /
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Connected spaces, part 1

~

(" Definition — Connected

Two sets A, B form a partition A|B of a topological space (X, T), if
they are nonempty, open and disjoint with A U B = X. We say that

\the space X is connected, if it has no such partition A|B. )

~

/Theorem 2.15 — Some facts about connected spaces

@ To say that X is connected is to say that the only subsets of X
which are both open and closed in X are the subsets &, X.

® The continuous image of a connected space is connected: if X is
connected and f: X — Y is continuous, then f(X) is connected.

©® A subset of R is connected if and only if it is an interval.

O If a connected space A is a subset of X and the sets U,V form a
partition of X, then A must lie entirely within either U or V.

- /
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Connected spaces, part 2

/Theorem 2.16 — Some more facts about connected spaces )
© If A is a connected subset of X, then A is connected as well.
® Consider a collection of connected sets U; that have a point in
common. Then the union of these sets is connected as well.
9 ® The product of two connected spaces is connected. )
/Definition — Connected component )

Let (X,T) be a topological space. The connected component of a

9 point x € X is the largest connected subset of X that contains z. )

\

/Theorem 2.17 — Connected components are closed

Let (X,T') be a topological space. Then X is the disjoint union of its
\connected components and each connected component is closed in X. )
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Compact spaces, part 1

( Definition — Compactness w

Let (X, T) be a topological space and let A C X. An open cover of A
is a collection of open sets whose union contains A. An open subcover
is a subcollection which still forms an open cover. We say that A is
compact if every open cover of A has a finite subcover.

@ The intervals (—n,n) with n € N form an open cover of R, but this
cover has no finite subcover, so R is not compact.

@ Suppose {z,} is a sequence that converges to the point z. Then the
set A ={z,x1,29,x3,...} is easily seen to be compact.

(Theorem 2.18 — Compactness and convergence w

Suppose that X is a compact metric space. Then every sequence in X
has a convergent subsequence.
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Compact spaces, part 2

~

/Theorem 2.19 — Main facts about compact spaces

@ A compact subset of a Hausdorff space is closed.
® A closed subset of a compact space is compact.
©® The interval [a,b] is compact for all real numbers a < b.

® The continuous image of a compact space is compact: if X is
compact and f: X — Y is continuous, then f(X) is compact.

® If X is compact and f: X — R is continuous, then f is bounded.

® If X is compact and f: X — R is continuous, then there exist
points a,b € X such that f(a) < f(x) < f(b) for all z € X.

@ The product of two compact spaces is compact.

- J
/Theorem 2.20 — Heine-Borel theorem )
\A subset of R¥ is compact if and only if it is closed and bounded. )
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Homeomorphisms

p

Definition — Homeomorphism R

.

A function f: X — Y between topological spaces is a homeomorphism
if f is bijective, continuous and its inverse f~! is continuous. When
such a function exists, we say that X and Y are homeomorphic. )

p

Theorem 2.21 — Main facts about homeomorphisms h

.

@ Consider two homeomorphic topological spaces. If one of them is
connected or compact or Hausdorff, then so is the other.

® Suppose f: X — Y is bijective and continuous. If X is compact
and Y is Hausdorff, then f is a homeomorphism. Y

e Every open interval (a,b) is homeomorphic to R. Thus, a complete
space can be homeomorphic with a space which is not complete.
@ There is no closed interval [a, b] that is homeomorphic to R because

the former space is compact and the latter space is not.
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Uniform continuity in metric spaces

\

4 Definition — Uniformly continuous

Let (X,dx) and (Y,dy) be metric spaces. A function f: X — Y is
uniformly continuous if, given any € > 0 there exists § > 0 such that

dx(z,y) <6 = dy(f(z),f(y) <e forall z,y € X.

- /

~

(" Theorem 2.22 — Main facts about uniform continuity

@ Every Lipschitz continuous function is uniformly continuous.
@ Every uniformly continuous function is continuous.

® When X is compact, a function f: X — Y is continuous on X if
and only if it is uniformly continuous on X.

- /

o f(x) = +/z is uniformly continuous on [0,1] but not Lipschitz.
e f(z) =1/x is continuous on (0,c0) but not uniformly continuous.
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