Chapter 2. Topological spaces Lecture notes for MA2223

P. Karageorgis

pete@maths.tcd.ie

Definition – Topology

A topology T on a set X is a collection of subsets of X such that

- **1** The topology T contains both the empty set \varnothing and X.
- **2** Every union of elements of T belongs to T.
- **3** Every finite intersection of elements of T belongs to T.
- A topological space (X,T) consists of a set X and a topology T.
- Every metric space (X, d) is a topological space. In fact, one may define a topology to consist of all sets which are open in X. This particular topology is said to be induced by the metric.
- The elements of a topology are often called open. This terminology may be somewhat confusing, but it is quite standard. To say that a set U is open in a topological space (X, T) is to say that U ∈ T.

- The discrete topology on a set X is defined as the topology which consists of all possible subsets of X.
- The indiscrete topology on a set X is defined as the topology which consists of the subsets \varnothing and X only.
- Every metric space (X, d) has a topology which is induced by its metric. It consists of all subsets of X which are open in X.

Definition – Metrisable space

A topological space (X,T) is called metrisable, if there exists a metric on X such that the topology T is induced by this metric.

• The discrete topology on X is metrisable and it is actually induced by the discrete metric. On the other hand, the indiscrete topology on X is not metrisable, if X has two or more elements.

Definition – Convergence

Let (X,T) be a topological space. A sequence $\{x_n\}$ of points of X is said to converge to the point $x \in X$ if, given any open set U that contains x, there exists an integer N such that $x_n \in U$ for all $n \ge N$.

• When a sequence $\{x_n\}$ converges to a point x, we say that x is the limit of the sequence and we write $x_n \to x$ as $n \to \infty$ or simply

 $\lim_{n \to \infty} x_n = x.$

• When X is a metric space, this new definition of convergence agrees with the definition of convergence in metric spaces.

Theorem 2.1 – Limits are not necessarily unique

Suppose that X has the indiscrete topology and let $x \in X$. Then the constant sequence $x_n = x$ converges to y for every $y \in X$.

Definition – Closed set

Suppose (X,T) is a topological space and let $A \subset X$. We say that A is closed in X, if its complement X - A is open in X.

Theorem 2.2 – Main facts about closed sets

- **1** If a subset $A \subset X$ is closed in X, then every sequence of points of A that converges must converge to a point of A.
- **2** Both \varnothing and X are closed in X.
- **3** Finite unions of closed sets are closed.
- 4 Arbitrary intersections of closed sets are closed.
- We have already established these statements for metric spaces and our proofs apply almost verbatim in the case of topological spaces.

Definition – Closure

Suppose (X,T) is a topological space and let $A \subset X$. The closure \overline{A} of A is defined as the smallest closed set that contains A. It is thus the intersection of all closed sets that contain A.

- The interval A = [0, 1) has closure $\overline{A} = [0, 1]$.
- The interval A = (0, 1) has closure $\overline{A} = [0, 1]$.

Theorem 2.3 – Main facts about the closure

1 One has
$$A \subset \overline{A}$$
 for any set A .

② If
$$A \subset B$$
, then $\overline{A} \subset \overline{B}$ as well.

3 The set A is closed if and only if $\overline{A} = A$.

4 The closure of \overline{A} is itself, namely $\overline{\overline{A}} = \overline{A}$.

Definition – Interior

Suppose (X,T) is a topological space and let $A \subset X$. The interior A° of A is defined as the largest open set contained in A. It is thus the union of all open sets contained in A.

- The interval A = [0, 1] has interior $A^{\circ} = (0, 1)$.
- The interval A = [0, 1) has interior $A^{\circ} = (0, 1)$.

Theorem 2.4 – Main facts about the interior

- **1** One has $A^{\circ} \subset A$ for any set A.
- **2** If $A \subset B$, then $A^{\circ} \subset B^{\circ}$ as well.
- **3** The set A is open if and only if $A^{\circ} = A$.
- **4** The interior of A° is itself, namely $(A^{\circ})^{\circ} = A^{\circ}$.

Boundary of a set

Definition – Boundary

Suppose (X,T) is a topological space and let $A \subset X$. The boundary of A is defined as the set $\partial A = \overline{A} \cap \overline{X - A}$.

Definition – Neighbourhood

Suppose (X,T) is a topological space and let $x \in X$ be an arbitrary point. A neighbourhood of x is simply an open set that contains x.

Theorem 2.5 – Characterisation of closure/interior/boundary

Suppose (X,T) is a topological space and let $A \subset X$.

- **1** $x \in \overline{A} \iff$ every neighbourhood of x intersects A.
- **2** $x \in A^{\circ} \iff$ some neighbourhood of x lies within A.
- **8** $x \in \partial A \iff$ every neighbourhood of x intersects A and X A.

Interior, closure and boundary: examples

Theorem 2.6 – Interior, closure and boundary

One has $A^{\circ} \cap \partial A = \emptyset$ and also $A^{\circ} \cup \partial A = \overline{A}$ for any set A.

Set	Interior	Closure	Boundary
{1}	Ø	$\{1\}$	{1}
[0,1)	(0,1)	[0,1]	$\{0,1\}$
$(0,1) \cup (1,2)$	$(0,1)\cup(1,2)$	[0,2]	$\{0, 1, 2\}$
$[0,1]\cup\{2\}$	(0,1)	$[0,1]\cup\{2\}$	$\{0, 1, 2\}$
Z	Ø	\mathbb{Z}	\mathbb{Z}
Q	Ø	\mathbb{R}	\mathbb{R}
R	$\mathbb R$	$\mathbb R$	Ø

Definition – Limit point

Let (X,T) be a topological space and let $A \subset X$. We say that x is a limit point of A if every neighbourhood of x intersects A at a point other than x.

Theorem 2.7 – Limit points and closure

Let (X,T) be a topological space and let $A \subset X$. If A' is the set of all limit points of A, then the closure of A is $\overline{A} = A \cup A'$.

- Intuitively, limit points of A are limits of sequences of points of A.
- The set $A = \{1/n : n \in \mathbb{N}\}$ has only one limit point, namely x = 0.
- Every point of A = (0, 1) is a limit point of A, while A' = [0, 1].
- A set is closed if and only if it contains its limit points.

Definition – Continuity

A function $f: X \to Y$ between topological spaces is called continuous if $f^{-1}(U)$ is open in X for each set U which is open in Y.

Theorem 2.8 – Composition of continuous functions

Suppose $f: X \to Y$ and $g: Y \to Z$ are continuous functions between topological spaces. Then the composition $g \circ f: X \to Z$ is continuous.

Theorem 2.9 – Continuity and sequences

Let $f: X \to Y$ be a continuous function between topological spaces and let $\{x_n\}$ be a sequence of points of X which converges to $x \in X$. Then the sequence $\{f(x_n)\}$ must converge to f(x).

Subspace topology

Definition – Subspace topology

Let (X,T) be a topological space and let $A \subset X$. Then the set

$$T' = \{U \cap A : U \in T\}$$

forms a topology on A which is known as the subspace topology.

Theorem 2.10 – Inclusion maps are continuous

Let (X,T) be a topological space and let $A \subset X$. Then the inclusion map $i: A \to X$ which is defined by i(x) = x is continuous.

Theorem 2.11 – Restriction maps are continuous

Let $f: X \to Y$ be a continuous function between topological spaces and let $A \subset X$. Then the restriction map $g: A \to Y$ which is defined by g(x) = f(x) is continuous. This map is often denoted by $g = f|_A$.

Definition – Product topology

Given two topological spaces (X, T) and (Y, T'), we define the product topology on $X \times Y$ as the collection of all unions $\bigcup_i U_i \times V_i$, where each U_i is open in X and each V_i is open in Y.

Theorem 2.12 – Projection maps are continuous

Let (X,T) and (Y,T') be topological spaces. If $X \times Y$ is equipped with the product topology, then the projection map $p_1 \colon X \times Y \to X$ defined by $p_1(x,y) = x$ is continuous. Moreover, the same is true for the projection map $p_2 \colon X \times Y \to Y$ defined by $p_2(x,y) = y$.

Theorem 2.13 – Continuous map into a product space

Let X, Y, Z be topological spaces. Then a function $f: Z \to X \times Y$ is continuous if and only if its components $p_1 \circ f$, $p_2 \circ f$ are continuous.

Hausdorff spaces

Definition – Hausdorff space

We say that a topological space (X,T) is Hausdorff if any two distinct points of X have neighbourhoods which do not intersect.

- If a space X has the discrete topology, then X is Hausdorff.
- If a space X has the indiscrete topology and it contains two or more elements, then X is not Hausdorff.

Theorem 2.14 – Main facts about Hausdorff spaces

- 1) Every metric space is Hausdorff.
- 2 Every subset of a Hausdorff space is Hausdorff.
- **3** Every finite subset of a Hausdorff space is closed.
- ④ The product of two Hausdorff spaces is Hausdorff.
- 6 A convergent sequence in a Hausdorff space has a unique limit.

Definition – Connected

Two sets A, B form a partition A|B of a topological space (X, T), if they are nonempty, open and disjoint with $A \cup B = X$. We say that the space X is connected, if it has no such partition A|B.

Theorem 2.15 – Some facts about connected spaces

- I To say that X is connected is to say that the only subsets of X which are both open and closed in X are the subsets Ø, X.
- **2** The continuous image of a connected space is connected: if X is connected and $f: X \to Y$ is continuous, then f(X) is connected.
- ${\color{black}{\bullet}}$ A subset of ${\mathbb R}$ is connected if and only if it is an interval.
- If a connected space A is a subset of X and the sets U, V form a partition of X, then A must lie entirely within either U or V.

Connected spaces, part 2

Theorem 2.16 – Some more facts about connected spaces

- **1** If A is a connected subset of X, then \overline{A} is connected as well.
- **2** Consider a collection of connected sets U_i that have a point in common. Then the union of these sets is connected as well.

3 The product of two connected spaces is connected.

Definition – Connected component

Let (X,T) be a topological space. The connected component of a point $x \in X$ is the largest connected subset of X that contains x.

Theorem 2.17 – Connected components are closed

Let (X,T) be a topological space. Then X is the disjoint union of its connected components and each connected component is closed in X.

Definition – Compactness

Let (X,T) be a topological space and let $A \subset X$. An open cover of A is a collection of open sets whose union contains A. An open subcover is a subcollection which still forms an open cover. We say that A is compact if every open cover of A has a finite subcover.

- The intervals (-n, n) with $n \in \mathbb{N}$ form an open cover of \mathbb{R} , but this cover has no finite subcover, so \mathbb{R} is not compact.
- Suppose $\{x_n\}$ is a sequence that converges to the point x. Then the set $A = \{x, x_1, x_2, x_3, \ldots\}$ is easily seen to be compact.

Theorem 2.18 – Compactness and convergence

Suppose that X is a compact metric space. Then every sequence in X has a convergent subsequence.

Compact spaces, part 2

Theorem 2.19 – Main facts about compact spaces

- **1** A compact subset of a Hausdorff space is closed.
- 2 A closed subset of a compact space is compact.
- **3** The interval [a, b] is compact for all real numbers a < b.
- ④ The continuous image of a compact space is compact: if X is compact and $f: X \to Y$ is continuous, then f(X) is compact.
- **5** If X is compact and $f: X \to \mathbb{R}$ is continuous, then f is bounded.
- **6** If X is compact and $f: X \to \mathbb{R}$ is continuous, then there exist points $a, b \in X$ such that $f(a) \leq f(x) \leq f(b)$ for all $x \in X$.
- 7 The product of two compact spaces is compact.

Theorem 2.20 – Heine-Borel theorem

A subset of \mathbb{R}^k is compact if and only if it is closed and bounded.

Definition – Homeomorphism

A function $f: X \to Y$ between topological spaces is a homeomorphism if f is bijective, continuous and its inverse f^{-1} is continuous. When such a function exists, we say that X and Y are homeomorphic.

Theorem 2.21 – Main facts about homeomorphisms

Consider two homeomorphic topological spaces. If one of them is connected or compact or Hausdorff, then so is the other.

2 Suppose f: X → Y is bijective and continuous. If X is compact and Y is Hausdorff, then f is a homeomorphism.

- Every open interval (a, b) is homeomorphic to \mathbb{R} . Thus, a complete space can be homeomorphic with a space which is not complete.
- There is no closed interval [a, b] that is homeomorphic to \mathbb{R} because the former space is compact and the latter space is not.

Uniform continuity in metric spaces

Definition – Uniformly continuous

Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is uniformly continuous if, given any $\varepsilon > 0$ there exists $\delta > 0$ such that

 $d_X(x,y) < \delta \quad \Longrightarrow \quad d_Y(f(x),f(y)) < \varepsilon \qquad \text{for all } x,y \in X.$

Theorem 2.22 – Main facts about uniform continuity

- Every Lipschitz continuous function is uniformly continuous.
- **2** Every uniformly continuous function is continuous.
- Solution When X is compact, a function f: X → Y is continuous on X if and only if it is uniformly continuous on X.
- $f(x) = \sqrt{x}$ is uniformly continuous on [0, 1] but not Lipschitz. • f(x) = 1/x is continuous on $(0, \infty)$ but not uniformly continuous.