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Topological space

Definition – Topology

A topology T on a set X is a collection of subsets of X such that

1 The topology T contains both the empty set ∅ and X.

2 Every union of elements of T belongs to T .

3 Every finite intersection of elements of T belongs to T .

A topological space (X,T ) consists of a set X and a topology T .

Every metric space (X, d) is a topological space. In fact, one may
define a topology to consist of all sets which are open in X. This
particular topology is said to be induced by the metric.

The elements of a topology are often called open. This terminology
may be somewhat confusing, but it is quite standard. To say that a
set U is open in a topological space (X,T ) is to say that U ∈ T .
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Examples of topological spaces

The discrete topology on a set X is defined as the topology which
consists of all possible subsets of X.

The indiscrete topology on a set X is defined as the topology which
consists of the subsets ∅ and X only.

Every metric space (X, d) has a topology which is induced by its
metric. It consists of all subsets of X which are open in X.

Definition – Metrisable space

A topological space (X,T ) is called metrisable, if there exists a metric
on X such that the topology T is induced by this metric.

The discrete topology on X is metrisable and it is actually induced by
the discrete metric. On the other hand, the indiscrete topology on X
is not metrisable, if X has two or more elements.
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Convergence of sequences

Definition – Convergence

Let (X,T ) be a topological space. A sequence {xn} of points of X
is said to converge to the point x ∈ X if, given any open set U that
contains x, there exists an integer N such that xn ∈ U for all n ≥ N .

When a sequence {xn} converges to a point x, we say that x is the
limit of the sequence and we write xn → x as n→∞ or simply

lim
n→∞

xn = x.

When X is a metric space, this new definition of convergence agrees
with the definition of convergence in metric spaces.

Theorem 2.1 – Limits are not necessarily unique

Suppose that X has the indiscrete topology and let x ∈ X. Then the
constant sequence xn = x converges to y for every y ∈ X.
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Closed sets

Definition – Closed set

Suppose (X,T ) is a topological space and let A ⊂ X. We say that A
is closed in X, if its complement X −A is open in X.

Theorem 2.2 – Main facts about closed sets

1 If a subset A ⊂ X is closed in X, then every sequence of points
of A that converges must converge to a point of A.

2 Both ∅ and X are closed in X.

3 Finite unions of closed sets are closed.

4 Arbitrary intersections of closed sets are closed.

We have already established these statements for metric spaces and
our proofs apply almost verbatim in the case of topological spaces.
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Closure of a set

Definition – Closure

Suppose (X,T ) is a topological space and let A ⊂ X. The closure A
of A is defined as the smallest closed set that contains A. It is thus
the intersection of all closed sets that contain A.

The interval A = [0, 1) has closure A = [0, 1].

The interval A = (0, 1) has closure A = [0, 1].

Theorem 2.3 – Main facts about the closure

1 One has A ⊂ A for any set A.

2 If A ⊂ B, then A ⊂ B as well.

3 The set A is closed if and only if A = A.

4 The closure of A is itself, namely A = A.
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Interior of a set

Definition – Interior

Suppose (X,T ) is a topological space and let A ⊂ X. The interior A◦

of A is defined as the largest open set contained in A. It is thus the
union of all open sets contained in A.

The interval A = [0, 1] has interior A◦ = (0, 1).

The interval A = [0, 1) has interior A◦ = (0, 1).

Theorem 2.4 – Main facts about the interior

1 One has A◦ ⊂ A for any set A.

2 If A ⊂ B, then A◦ ⊂ B◦ as well.

3 The set A is open if and only if A◦ = A.

4 The interior of A◦ is itself, namely (A◦)◦ = A◦.
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Boundary of a set

Definition – Boundary

Suppose (X,T ) is a topological space and let A ⊂ X. The boundary
of A is defined as the set ∂A = A ∩X −A.

Definition – Neighbourhood

Suppose (X,T ) is a topological space and let x ∈ X be an arbitrary
point. A neighbourhood of x is simply an open set that contains x.

Theorem 2.5 – Characterisation of closure/interior/boundary

Suppose (X,T ) is a topological space and let A ⊂ X.

1 x ∈ A ⇐⇒ every neighbourhood of x intersects A.

2 x ∈ A◦ ⇐⇒ some neighbourhood of x lies within A.

3 x ∈ ∂A ⇐⇒ every neighbourhood of x intersects A and X −A.
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Interior, closure and boundary: examples

Theorem 2.6 – Interior, closure and boundary

One has A◦ ∩ ∂A = ∅ and also A◦ ∪ ∂A = A for any set A.

Set Interior Closure Boundary

{1} ∅ {1} {1}

[0, 1) (0, 1) [0, 1] {0, 1}

(0, 1) ∪ (1, 2) (0, 1) ∪ (1, 2) [0, 2] {0, 1, 2}

[0, 1] ∪ {2} (0, 1) [0, 1] ∪ {2} {0, 1, 2}

Z ∅ Z Z

Q ∅ R R

R R R ∅
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Limit points

Definition – Limit point

Let (X,T ) be a topological space and let A ⊂ X. We say that x is
a limit point of A if every neighbourhood of x intersects A at a point
other than x.

Theorem 2.7 – Limit points and closure

Let (X,T ) be a topological space and let A ⊂ X. If A′ is the set of
all limit points of A, then the closure of A is A = A ∪A′.

Intuitively, limit points of A are limits of sequences of points of A.

The set A = {1/n : n ∈ N} has only one limit point, namely x = 0.

Every point of A = (0, 1) is a limit point of A, while A′ = [0, 1].

A set is closed if and only if it contains its limit points.
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Continuity in topological spaces

Definition – Continuity

A function f : X → Y between topological spaces is called continuous
if f−1(U) is open in X for each set U which is open in Y .

Theorem 2.8 – Composition of continuous functions

Suppose f : X → Y and g : Y → Z are continuous functions between
topological spaces. Then the composition g ◦f : X → Z is continuous.

Theorem 2.9 – Continuity and sequences

Let f : X → Y be a continuous function between topological spaces
and let {xn} be a sequence of points of X which converges to x ∈ X.
Then the sequence {f(xn)} must converge to f(x).
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Subspace topology

Definition – Subspace topology

Let (X,T ) be a topological space and let A ⊂ X. Then the set

T ′ = {U ∩A : U ∈ T}

forms a topology on A which is known as the subspace topology.

Theorem 2.10 – Inclusion maps are continuous

Let (X,T ) be a topological space and let A ⊂ X. Then the inclusion
map i : A→ X which is defined by i(x) = x is continuous.

Theorem 2.11 – Restriction maps are continuous

Let f : X → Y be a continuous function between topological spaces
and let A ⊂ X. Then the restriction map g : A → Y which is defined
by g(x) = f(x) is continuous. This map is often denoted by g = f |A.
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Product topology

Definition – Product topology

Given two topological spaces (X,T ) and (Y, T ′), we define the product
topology on X × Y as the collection of all unions

⋃
i Ui × Vi, where

each Ui is open in X and each Vi is open in Y .

Theorem 2.12 – Projection maps are continuous

Let (X,T ) and (Y, T ′) be topological spaces. If X × Y is equipped
with the product topology, then the projection map p1 : X × Y → X
defined by p1(x, y) = x is continuous. Moreover, the same is true for
the projection map p2 : X × Y → Y defined by p2(x, y) = y.

Theorem 2.13 – Continuous map into a product space

Let X,Y, Z be topological spaces. Then a function f : Z → X × Y is
continuous if and only if its components p1 ◦ f , p2 ◦ f are continuous.
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Hausdorff spaces

Definition – Hausdorff space

We say that a topological space (X,T ) is Hausdorff if any two distinct
points of X have neighbourhoods which do not intersect.

If a space X has the discrete topology, then X is Hausdorff.

If a space X has the indiscrete topology and it contains two or more
elements, then X is not Hausdorff.

Theorem 2.14 – Main facts about Hausdorff spaces

1 Every metric space is Hausdorff.

2 Every subset of a Hausdorff space is Hausdorff.

3 Every finite subset of a Hausdorff space is closed.

4 The product of two Hausdorff spaces is Hausdorff.

5 A convergent sequence in a Hausdorff space has a unique limit.
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Connected spaces, part 1

Definition – Connected

Two sets A,B form a partition A|B of a topological space (X,T ), if
they are nonempty, open and disjoint with A ∪ B = X. We say that
the space X is connected, if it has no such partition A|B.

Theorem 2.15 – Some facts about connected spaces

1 To say that X is connected is to say that the only subsets of X
which are both open and closed in X are the subsets ∅, X.

2 The continuous image of a connected space is connected: if X is
connected and f : X → Y is continuous, then f(X) is connected.

3 A subset of R is connected if and only if it is an interval.

4 If a connected space A is a subset of X and the sets U, V form a
partition of X, then A must lie entirely within either U or V .
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Connected spaces, part 2

Theorem 2.16 – Some more facts about connected spaces

1 If A is a connected subset of X, then A is connected as well.

2 Consider a collection of connected sets Ui that have a point in
common. Then the union of these sets is connected as well.

3 The product of two connected spaces is connected.

Definition – Connected component

Let (X,T ) be a topological space. The connected component of a
point x ∈ X is the largest connected subset of X that contains x.

Theorem 2.17 – Connected components are closed

Let (X,T ) be a topological space. Then X is the disjoint union of its
connected components and each connected component is closed in X.
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Compact spaces, part 1

Definition – Compactness

Let (X,T ) be a topological space and let A ⊂ X. An open cover of A
is a collection of open sets whose union contains A. An open subcover
is a subcollection which still forms an open cover. We say that A is
compact if every open cover of A has a finite subcover.

The intervals (−n, n) with n ∈ N form an open cover of R, but this
cover has no finite subcover, so R is not compact.

Suppose {xn} is a sequence that converges to the point x. Then the
set A = {x, x1, x2, x3, . . .} is easily seen to be compact.

Theorem 2.18 – Compactness and convergence

Suppose that X is a compact metric space. Then every sequence in X
has a convergent subsequence.
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Compact spaces, part 2

Theorem 2.19 – Main facts about compact spaces

1 A compact subset of a Hausdorff space is closed.

2 A closed subset of a compact space is compact.

3 The interval [a, b] is compact for all real numbers a < b.

4 The continuous image of a compact space is compact: if X is
compact and f : X → Y is continuous, then f(X) is compact.

5 If X is compact and f : X → R is continuous, then f is bounded.

6 If X is compact and f : X → R is continuous, then there exist
points a, b ∈ X such that f(a) ≤ f(x) ≤ f(b) for all x ∈ X.

7 The product of two compact spaces is compact.

Theorem 2.20 – Heine-Borel theorem

A subset of Rk is compact if and only if it is closed and bounded.

18 / 20



Homeomorphisms

Definition – Homeomorphism

A function f : X → Y between topological spaces is a homeomorphism
if f is bijective, continuous and its inverse f−1 is continuous. When
such a function exists, we say that X and Y are homeomorphic.

Theorem 2.21 – Main facts about homeomorphisms

1 Consider two homeomorphic topological spaces. If one of them is
connected or compact or Hausdorff, then so is the other.

2 Suppose f : X → Y is bijective and continuous. If X is compact
and Y is Hausdorff, then f is a homeomorphism.

Every open interval (a, b) is homeomorphic to R. Thus, a complete
space can be homeomorphic with a space which is not complete.

There is no closed interval [a, b] that is homeomorphic to R because
the former space is compact and the latter space is not.
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Uniform continuity in metric spaces

Definition – Uniformly continuous

Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is
uniformly continuous if, given any ε > 0 there exists δ > 0 such that

dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε for all x, y ∈ X.

Theorem 2.22 – Main facts about uniform continuity

1 Every Lipschitz continuous function is uniformly continuous.

2 Every uniformly continuous function is continuous.

3 When X is compact, a function f : X → Y is continuous on X if
and only if it is uniformly continuous on X.

f(x) =
√
x is uniformly continuous on [0, 1] but not Lipschitz.

f(x) = 1/x is continuous on (0,∞) but not uniformly continuous.
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