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The definition of a metric

~

(” Definition — Metric

A metric on a set X is a function d that assigns a real number to each
pair of elements of X in such a way that the following properties hold.
@ Non-negativity: d(x,y) > 0 with equality if and only if x = y.
® Symmetry: d(z,y) = d(y,x) for all z,y € X.
©® Triangle inequality: d(z,y) < d(z,z) + d(z,y) for all z,y,z € X.

/

@ A metric space is a pair (X, d), where X is a set and d is a metric
defined on X. The metric is often regarded as a distance function.

@ The usual metric on R is the one given by d(z,y) = |z — y|.

@ A metric can be used to define limits and continuity of functions. In
fact, the -9 definition for functions on R can be easily adjusted so
that it applies to functions on an arbitrary metric space.
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Examples of metrics in R”

@ The usual metric in R¥ is the Euclidean metric dy defined by

. 1/2
da(z,y) = [Z |zi — yi|2] :

i=1
@ The metric d; is defined using the formula
k

di(z,y) = Z |z — yil-

=1

@ One may define a metric d,, for each p > 1 by setting

k 1/p
o= [Siut]”
i=1
o Finally, there is a metric do, which is defined by
oo (@, y) = max |z; —yil.
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Examples of other metrics

@ The discrete metric on a nonempty set X is defined by letting

ton {4 2y}

o Let C[a,b] denote the set of all continuous functions f: [a,b] — R. A
metric on C|[a,b] is then given by the formula

di(f,9) = /If z)| da.

@ Another metric on C|[a, b] is given by the formula

doo(f,9) = sup |f(x) —g(z)|.

a<z<b
Here, the supremum could also be replaced by a maximum.
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Technical inequalities

/Theorem 1.1 — Technical inequalities h
Suppose that z,y > 0 and let a, b, ¢ be arbitrary vectors in R¥.
@ Young's inequality: If p,g > 1 are such that 117 + é =1, then
P q
zy < T + z
p q
® Holder’s inequality: If p,g > 1 are such that 11—) + é =1, then
k k 1/p g 1/q
Slal < Yot | - [3zr
i=1 i=1 i=1
©® Minkowski’s inequality: If p > 1, then
9 dy(a,b) < dy(a,c) + dy(c,b). )
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Open balls

(Definition — Open ball

Suppose (X, d) is a metric space and let x € X be an arbitrary point.
The open ball with centre = and radius > 0 is defined as

B(z,r)={y € X : d(x,y) <r}.

@ The open balls in R are the open intervals B(z,r) = (x —r,x + r).
The open interval (a,b) has centre (b+ a)/2 and radius (b — a)/2.

@ If the metric on X is discrete, then B(x,1) = {x} for all z € X.
@ The open ball B(0,1) in X = [0,2] is given by B(0,1) = [0,1).

( Definition — Bounded

Let (X, d) be a metric space and A C X. We say that A is bounded,
if there exist a point x € X and some r > 0 such that A C B(x,r).
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/Definition — Open set )
Given a metric space (X, d), we say that a subset U C X is open in X
if, for each point « € U there exists € > 0 such that B(z,e) C U. In
other words, each x € U is the centre of an open ball that lies in U.

/Theorem 1.2 — Main facts about open sets h

® If X is a metric space, then both @ and X are open in X.
@ Arbitrary unions of open sets are open.
® Finite intersections of open sets are open.
@ Every open ball is an open set.
9 ® A set is open if and only if it is a union of open balls. )

@ Infinite intersections of open sets are not necessarily open.
@ If the metric on X is discrete, then every subset of X is open in X.
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Convergence of sequences

( Definition — Convergence

Let (X,d) be a metric space. We say that a sequence {x,} of points
of X converges to the point x € X if, given any € > 0 there exists an
integer N such that d(z,,z) < e for all n > N.

@ When a sequence {x,} converges to a point x, we say that z is the
limit of the sequence and we write x,, — x as n — 0o or simply

lim z, = x.
n—oo

o A sequence &, = (Tn1,Tp2,...,Tyk) of points in R* converges if and
only if each of the components x,,; converges in R.

(Theorem 1.3 — Limits are unique w

The limit of a sequence in a metric space is unique. In other words, no
sequence may converge to two different limits.
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Closed sets

~

C Definition — Closed set

Suppose (X, d) is a metric space and let A C X. We say that A is

\closed in X, if its complement X — A is open in X.

%
/Theorem 1.4 — Main facts about closed sets h

@ If a subset A C X is closed in X, then every sequence of points
of A that converges must converge to a point of A.

® Both @ and X are closed in X.

® Finite unions of closed sets are closed.

O Arbitrary intersections of closed sets are closed.

- /

@ The last two statements can be established using De Morgan'’s laws
XUU ﬂXU) XﬂU UXU)
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Continuity in metric spaces

~

4 Definition — Continuity

Let (X,dx) and (Y,dy) be metric spaces. A function f: X — Y is
continuous at = € X if, given any € > 0 there exists § > 0 such that

dx(z,y) <6 = dy(f(2), f(y)) <e.

We also say that f is continuous, if f is continuous at all points.

- /

@ One may express the above definition in terms of open balls as

y€B(x,0) = [f(y) € B(f(z)e).

o If f: X — Y is a constant function, then f is continuous.

@ Every function f: X — Y is continuous, if dx is discrete.
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Theorems involving continuity

~

/Theorem 1.5 — Composition of continuous functions

Suppose f: X — Y and g: Y — Z are continuous functions between

metric spaces. Then the composition go f: X — Z is continuous.

- /

\

/Theorem 1.6 — Continuity and sequences

Suppose f: X — Y is a continuous function between metric spaces
and let {z,,} be a sequence of points of X which converges to = € X.

\Then the sequence {f(x,)} must converge to f(x). )

\

/Theorem 1.7 — Continuity and open sets

A function f: X — Y between metric spaces is continuous if and only
\if f~Y(U) is open in X for each set U which is open in Y.

%
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Lipschitz continuity

~

4 Definition — Lipschitz continuous

Let (X,dx) and (Y,dy) be metric spaces. A function f: X — Y is
Lipschitz continuous, if there is a constant L > 0 such that

dy (f(z), f(y)) < L-dx(z,y) forallz,ye X.

- %
/Theorem 1.8 — Main facts about Lipschitz continuity h
@ Every Lipschitz continuous function is continuous.
@ If a function f: [a,b] — R is differentiable and its derivative is
bounded, then f is Lipschitz continuous on [a, b]. )

@ The function f(x) = 22 is Lipschitz continuous on [0, 1].
@ The function f(z) = +/z is not Lipschitz continuous on [0, 1].
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Convergence of functions

\

/Definition — Pointwise and uniform convergence

Let {fn(z)} be a sequence of functions f,: X — R, where X is a
metric space. We say that f,,(x) converges pointwise to f(x) if, given
any € > 0 there exists an integer N such that

|fn(z) — f(z)] <& foralln > N.

We also say that f,, converges to f uniformly on X if, given any € > 0
there exists an integer N such that

|fn(z) — f(x)] <e forallm> N and all z € X.

- /

@ For pointwise convergence, one gets to choose N depending on .
@ For uniform convergence, the same choice of N should work for all x.
o If a sequence converges uniformly, then it also converges pointwise.
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Pointwise and uniform convergence

\

/Theorem 1.9 — Pointwise and uniform convergence

@ To say that f,(z) — f(x) pointwise is to say that
|fn(x) — f(x)] = 0 asn — oo.
® To say that f,, — f uniformly on X is to say that

sup | fn(x) — f(z)] = 0 asn — co.

zeX

- /

\

/Theorem 1.10 — Uniform limit of continuous functions

The uniform limit of continuous functions is continuous: if each f, is
continuous and f,, — f uniformly on X, then f is continuous on X.

- /

@ The pointwise limit of continuous functions need not be continuous.
For instance, " converges to 0 if 0 <z <l andto 1l ifxz =1.
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Cauchy sequences

4 Definition — Cauchy sequence )
Let (X, d) be a metric space. A sequence {z,,} of points of X is called
Cauchy if, given any £ > 0 there exists an integer N such that

9 d(Tpm, ) < e forall myn > N. )

a T N
Theorem 1.11 — Convergent implies Cauchy

\In a metric space, every convergent sequence is a Cauchy sequence. )

(" Theorem 1.12 — Cauchy implies bounded h

\In a metric space, every Cauchy sequence is bounded. )

@ A Cauchy sequence does not have to be convergent. For instance, the
sequence z, = 1/n is Cauchy but not convergent in X = (0, 2).
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Completeness of R

\

/Definition — Complete metric space

A metric space (X, d) is called complete if every Cauchy sequence of

L points of X actually converges to a point of X. Y

~

/Theorem 1.13 — Cauchy sequence with convergent subsequence

Suppose (X, d) is a metric space and let {x,} be a Cauchy sequence
in X that has a convergent subsequence. Then {x,} converges itself. )

/Theorem 1.14 — Completeness of R h
@ Every sequence in R which is monotonic and bounded converges.
® Bolzano-Weierstrass theorem: Every bounded sequence in R
has a convergent subsequence.
L ©® The set R of all real numbers is a complete metric space. )
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Completeness

( Theorem 1.15 — Examples of complete metric spaces w

® The space R” is complete with respect to its usual metric.

® The space Cfa,b] is complete with respect to the dy, metric.

@ The space R¥ is complete with respect to any d, metric. One can
prove this fact by noting that duo(x,y) < dy(x,y) < kYPdy(z, y).

@ The space C|a, b] is not complete with respect to the d; metric. One
can find Cauchy sequences that converge to a discontinuous function.

@ Theset A= {1/n:n € N} is not complete. It contains a sequence
which converges in R, but this sequence does not converge in A.

( Theorem 1.16 — Subsets of a complete metric space w
LSuppose (X,d) is a complete metric space and let A C X. Then A isJ

complete if and only if A is closed in X.
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Banach'’s fixed point theorem

4 Definition — Contraction

~

Let (X, d) be a metric space. We say that a function f: X — X is a
contraction, if there exists a constant 0 < « < 1 such that

9 d(f(z), fly) <a-d(z,y) forallz,y e X.

v

/Theorem 1.17 — Banach’s fixed point theorem

\

has a unique fixed point, namely a unique point = with f(z) = .

If f: X — X is a contraction on a complete metric space X, then f

%

@ Every contraction is Lipschitz continuous, hence also continuous.

@ Consider the function f: (0,1) — (0,1) defined by f(z) = x/2. This
is easily seen to be a contraction, but it has no fixed point on (0,1).

Thus, one does need X to be complete for the theorem to hold.
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Application in differential equations

~

/Theorem 1.18 — Existence and uniqueness of solutions

Consider an initial value problem of the form

y(t)=fty®),  y(0) =0

If f is continuous in ¢t and Lipschitz continuous in y, then there exists
a unique solution y(t) which is defined on [0, £] for some ¢ > 0.

/

@ To say that y(¢) is a solution is to say that y(t) is a fixed point of

A(y() = yo + /0 F(5,5(5)) ds.

@ In general, solutions of differential equations need not be defined for
all times. For instance, y(t) = 1/(1 —t) is the unique solution of

y't) =yt y(0) =1
This solution is defined at time ¢ = 0 but not at time ¢t = 1.
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Completion of a metric space

( Theorem 1.19 — Completion of a metric space

Given a metric space (X, d), there exist a metric space (X', d’') and a
distance preserving map f: X — X’ such that X’ is complete.

@ A distance preserving map is called an isometry, while X’ is called a
completion of X. It is easy to check that every distance preserving
map is injective. Thus, one can always regard X as a subset of X’.

@ The proof of this theorem is somewhat long, but the general idea is to
define a relation on the set of Cauchy sequences in X by letting

{IL'n} ~ {yn} — nh—>H<§o d(wn’ yn) =0.

This turns out to be an equivalence relation and the completion X’ is
the set of all equivalence classes with metric d’ defined by

d'([zn), [yn]) = nh_{go d(Tn; Yn)-
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