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The definition of a metric

Definition – Metric

A metric on a set X is a function d that assigns a real number to each

pair of elements of X in such a way that the following properties hold.

1 Non-negativity: d(x, y) ≥ 0 with equality if and only if x = y.

2 Symmetry: d(x, y) = d(y, x) for all x, y ∈ X.

3 Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

A metric space is a pair (X, d), where X is a set and d is a metric

defined on X. The metric is often regarded as a distance function.

The usual metric on R is the one given by d(x, y) = |x− y|.
A metric can be used to define limits and continuity of functions. In

fact, the ε-δ definition for functions on R can be easily adjusted so

that it applies to functions on an arbitrary metric space.
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Examples of metrics in R
k

The usual metric in R
k is the Euclidean metric d2 defined by

d2(x,y) =

[

k
∑

i=1

|xi − yi|2
]1/2

.

The metric d1 is defined using the formula

d1(x,y) =

k
∑

i=1

|xi − yi|.

One may define a metric dp for each p ≥ 1 by setting

dp(x,y) =

[

k
∑

i=1

|xi − yi|p
]1/p

.

Finally, there is a metric d∞ which is defined by

d∞(x,y) = max
1≤i≤k

|xi − yi|.
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Examples of other metrics

The discrete metric on a nonempty set X is defined by letting

d(x, y) =

{

1 if x 6= y
0 if x = y

}

.

Let C[a, b] denote the set of all continuous functions f : [a, b] → R. A

metric on C[a, b] is then given by the formula

d1(f, g) =

∫ b

a
|f(x)− g(x)| dx.

Another metric on C[a, b] is given by the formula

d∞(f, g) = sup
a≤x≤b

|f(x)− g(x)|.

Here, the supremum could also be replaced by a maximum.
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Technical inequalities

Theorem 1.1 – Technical inequalities

Suppose that x, y ≥ 0 and let a, b, c be arbitrary vectors in R
k.

1 Young’s inequality: If p, q > 1 are such that 1

p + 1

q = 1, then

xy ≤ xp

p
+

yq

q
.

2 Hölder’s inequality: If p, q > 1 are such that 1

p +
1

q = 1, then

k
∑

i=1

|ai| · |bi| ≤
[

k
∑

i=1

|ai|p
]1/p [ k

∑

i=1

|bi|q
]1/q

.

3 Minkowski’s inequality: If p > 1, then

dp(a, b) ≤ dp(a, c) + dp(c, b).
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Open balls

Definition – Open ball

Suppose (X, d) is a metric space and let x ∈ X be an arbitrary point.

The open ball with centre x and radius r > 0 is defined as

B(x, r) = {y ∈ X : d(x, y) < r}.

The open balls in R are the open intervals B(x, r) = (x− r, x+ r).
The open interval (a, b) has centre (b+ a)/2 and radius (b− a)/2.

If the metric on X is discrete, then B(x, 1) = {x} for all x ∈ X.

The open ball B(0, 1) in X = [0, 2] is given by B(0, 1) = [0, 1).

Definition – Bounded

Let (X, d) be a metric space and A ⊂ X. We say that A is bounded,

if there exist a point x ∈ X and some r > 0 such that A ⊂ B(x, r).
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Open sets

Definition – Open set

Given a metric space (X, d), we say that a subset U ⊂ X is open in X
if, for each point x ∈ U there exists ε > 0 such that B(x, ε) ⊂ U . In

other words, each x ∈ U is the centre of an open ball that lies in U .

Theorem 1.2 – Main facts about open sets

1 If X is a metric space, then both ∅ and X are open in X.

2 Arbitrary unions of open sets are open.

3 Finite intersections of open sets are open.

4 Every open ball is an open set.

5 A set is open if and only if it is a union of open balls.

Infinite intersections of open sets are not necessarily open.

If the metric on X is discrete, then every subset of X is open in X.
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Convergence of sequences

Definition – Convergence

Let (X, d) be a metric space. We say that a sequence {xn} of points

of X converges to the point x ∈ X if, given any ε > 0 there exists an

integer N such that d(xn, x) < ε for all n ≥ N .

When a sequence {xn} converges to a point x, we say that x is the

limit of the sequence and we write xn → x as n → ∞ or simply

lim
n→∞

xn = x.

A sequence xn = (xn1, xn2, . . . , xnk) of points in R
k converges if and

only if each of the components xni converges in R.

Theorem 1.3 – Limits are unique

The limit of a sequence in a metric space is unique. In other words, no

sequence may converge to two different limits.
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Closed sets

Definition – Closed set

Suppose (X, d) is a metric space and let A ⊂ X. We say that A is

closed in X, if its complement X −A is open in X.

Theorem 1.4 – Main facts about closed sets

1 If a subset A ⊂ X is closed in X, then every sequence of points

of A that converges must converge to a point of A.

2 Both ∅ and X are closed in X.

3 Finite unions of closed sets are closed.

4 Arbitrary intersections of closed sets are closed.

The last two statements can be established using De Morgan’s laws

X −
⋃

i

Ui =
⋂

i

(X − Ui), X −
⋂

i

Ui =
⋃

i

(X − Ui).
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Continuity in metric spaces

Definition – Continuity

Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is

continuous at x ∈ X if, given any ε > 0 there exists δ > 0 such that

dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε.

We also say that f is continuous, if f is continuous at all points.

One may express the above definition in terms of open balls as

y ∈ B(x, δ) =⇒ f(y) ∈ B(f(x), ε).

If f : X → Y is a constant function, then f is continuous.

Every function f : X → Y is continuous, if dX is discrete.
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Theorems involving continuity

Theorem 1.5 – Composition of continuous functions

Suppose f : X → Y and g : Y → Z are continuous functions between

metric spaces. Then the composition g ◦ f : X → Z is continuous.

Theorem 1.6 – Continuity and sequences

Suppose f : X → Y is a continuous function between metric spaces

and let {xn} be a sequence of points of X which converges to x ∈ X.

Then the sequence {f(xn)} must converge to f(x).

Theorem 1.7 – Continuity and open sets

A function f : X → Y between metric spaces is continuous if and only

if f−1(U) is open in X for each set U which is open in Y .
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Lipschitz continuity

Definition – Lipschitz continuous

Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is

Lipschitz continuous, if there is a constant L ≥ 0 such that

dY (f(x), f(y)) ≤ L · dX(x, y) for all x, y ∈ X.

Theorem 1.8 – Main facts about Lipschitz continuity

1 Every Lipschitz continuous function is continuous.

2 If a function f : [a, b] → R is differentiable and its derivative is

bounded, then f is Lipschitz continuous on [a, b].

The function f(x) = x2 is Lipschitz continuous on [0, 1].

The function f(x) =
√
x is not Lipschitz continuous on [0, 1].
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Convergence of functions

Definition – Pointwise and uniform convergence

Let {fn(x)} be a sequence of functions fn : X → R, where X is a

metric space. We say that fn(x) converges pointwise to f(x) if, given
any ε > 0 there exists an integer N such that

|fn(x)− f(x)| < ε for all n ≥ N .

We also say that fn converges to f uniformly on X if, given any ε > 0
there exists an integer N such that

|fn(x)− f(x)| < ε for all n ≥ N and all x ∈ X.

For pointwise convergence, one gets to choose N depending on x.

For uniform convergence, the same choice of N should work for all x.

If a sequence converges uniformly, then it also converges pointwise.
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Pointwise and uniform convergence

Theorem 1.9 – Pointwise and uniform convergence

1 To say that fn(x) → f(x) pointwise is to say that

|fn(x)− f(x)| → 0 as n → ∞.

2 To say that fn → f uniformly on X is to say that

sup
x∈X

|fn(x)− f(x)| → 0 as n → ∞.

Theorem 1.10 – Uniform limit of continuous functions

The uniform limit of continuous functions is continuous: if each fn is

continuous and fn → f uniformly on X, then f is continuous on X.

The pointwise limit of continuous functions need not be continuous.

For instance, xn converges to 0 if 0 ≤ x < 1 and to 1 if x = 1.
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Cauchy sequences

Definition – Cauchy sequence

Let (X, d) be a metric space. A sequence {xn} of points of X is called

Cauchy if, given any ε > 0 there exists an integer N such that

d(xm, xn) < ε for all m,n ≥ N .

Theorem 1.11 – Convergent implies Cauchy

In a metric space, every convergent sequence is a Cauchy sequence.

Theorem 1.12 – Cauchy implies bounded

In a metric space, every Cauchy sequence is bounded.

A Cauchy sequence does not have to be convergent. For instance, the

sequence xn = 1/n is Cauchy but not convergent in X = (0, 2).
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Completeness of R

Definition – Complete metric space

A metric space (X, d) is called complete if every Cauchy sequence of

points of X actually converges to a point of X.

Theorem 1.13 – Cauchy sequence with convergent subsequence

Suppose (X, d) is a metric space and let {xn} be a Cauchy sequence

in X that has a convergent subsequence. Then {xn} converges itself.

Theorem 1.14 – Completeness of R

1 Every sequence in R which is monotonic and bounded converges.

2 Bolzano-Weierstrass theorem: Every bounded sequence in R

has a convergent subsequence.

3 The set R of all real numbers is a complete metric space.
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Completeness

Theorem 1.15 – Examples of complete metric spaces

1 The space R
k is complete with respect to its usual metric.

2 The space C[a, b] is complete with respect to the d∞ metric.

The space R
k is complete with respect to any dp metric. One can

prove this fact by noting that d∞(x,y) ≤ dp(x,y) ≤ k1/pd∞(x,y).

The space C[a, b] is not complete with respect to the d1 metric. One

can find Cauchy sequences that converge to a discontinuous function.

The set A = {1/n : n ∈ N} is not complete. It contains a sequence

which converges in R, but this sequence does not converge in A.

Theorem 1.16 – Subsets of a complete metric space

Suppose (X, d) is a complete metric space and let A ⊂ X. Then A is

complete if and only if A is closed in X.
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Banach’s fixed point theorem

Definition – Contraction

Let (X, d) be a metric space. We say that a function f : X → X is a

contraction, if there exists a constant 0 ≤ α < 1 such that

d(f(x), f(y)) ≤ α · d(x, y) for all x, y ∈ X.

Theorem 1.17 – Banach’s fixed point theorem

If f : X → X is a contraction on a complete metric space X, then f
has a unique fixed point, namely a unique point x with f(x) = x.

Every contraction is Lipschitz continuous, hence also continuous.

Consider the function f : (0, 1) → (0, 1) defined by f(x) = x/2. This
is easily seen to be a contraction, but it has no fixed point on (0, 1).
Thus, one does need X to be complete for the theorem to hold.
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Application in differential equations

Theorem 1.18 – Existence and uniqueness of solutions

Consider an initial value problem of the form

y′(t) = f(t, y(t)), y(0) = y0.

If f is continuous in t and Lipschitz continuous in y, then there exists

a unique solution y(t) which is defined on [0, ε] for some ε > 0.

To say that y(t) is a solution is to say that y(t) is a fixed point of

A(y(t)) = y0 +

∫ t

0

f(s, y(s)) ds.

In general, solutions of differential equations need not be defined for

all times. For instance, y(t) = 1/(1 − t) is the unique solution of

y′(t) = y(t)2, y(0) = 1.

This solution is defined at time t = 0 but not at time t = 1.
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Completion of a metric space

Theorem 1.19 – Completion of a metric space

Given a metric space (X, d), there exist a metric space (X ′, d′) and a

distance preserving map f : X → X ′ such that X ′ is complete.

A distance preserving map is called an isometry, while X ′ is called a

completion of X. It is easy to check that every distance preserving

map is injective. Thus, one can always regard X as a subset of X ′.

The proof of this theorem is somewhat long, but the general idea is to

define a relation on the set of Cauchy sequences in X by letting

{xn} ∼ {yn} ⇐⇒ lim
n→∞

d(xn, yn) = 0.

This turns out to be an equivalence relation and the completion X ′ is

the set of all equivalence classes with metric d′ defined by

d′([xn], [yn]) = lim
n→∞

d(xn, yn).
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