1. Are any of the following sets homeomorphic? Explain.

A = (0, 1), B = [0, 1), C = [0, 1], $D = [0, \infty).$

The set C is not homeomorphic to any of the other sets because C is compact and the other sets are not. To show that B and D are homeomorphic, we note that either of the functions

$$f(x) = x/(1-x),$$
 $g(x) = \tan(\pi x/2)$

gives rise to a homeomorphism between B = [0, 1) and $D = [0, \infty)$.

Finally, we turn to A and B. Were these sets homeomorphic, we would have a homeomorphism $h: [0,1) \rightarrow (0,1)$ and its restriction on (0,1) would also be a homeomorphism. This is not possible, as the image of the restriction is $(0,1)-\{h(0)\}$ which is not connected.

2. Let (X,d) be a metric space and fix some $y \in X$. Show that the function $f: X \to \mathbb{R}$ defined by f(x) = d(x,y) is Lipschitz continuous.

Letting $x, z \in X$ be arbitrary, we use the triangle inequality to get

$$\begin{split} f(x) &= d(x,y) \leq d(x,z) + d(z,y) = d(x,z) + f(z) \\ f(z) &= d(z,y) \leq d(z,x) + d(x,y) = d(x,z) + f(x). \end{split}$$

Once we now combine these equations, we may conclude that

$$|f(x) - f(z)| \le d(x, z).$$

This shows that the function $f: X \to \mathbb{R}$ is Lipschitz continuous.

3. Let $x_n \in \ell^p$ denote the sequence whose first n^2 entries are equal to 1/n and all other entries are zero. For which values of $1 \le p \le \infty$ does this sequence converge to the zero sequence in ℓ^p ?

Using the definition of the norm in ℓ^p , we find that

$$||\boldsymbol{x}_n - 0||_p^p = \sum_{i=1}^\infty |x_{ni}|^p = \sum_{i=1}^{n^2} \frac{1}{n^p} = n^{2-p}$$

This expression converges to zero if and only if the exponent 2-p is negative, hence if and only if p > 2.

4. Let $e_n \in \ell^{\infty}$ denote the sequence whose *n*th entry is equal to 1 and all other entries are zero. Show that $\{e_n\}_{n=1}^{\infty}$ is bounded but not Cauchy and that the unit ball $B = \{x \in \ell^{\infty} : ||x||_{\infty} \leq 1\}$ is closed and bounded, but not compact.

First of all, $\{e_n\}_{n=1}^{\infty}$ is bounded but not Cauchy because

$$||e_n||_{\infty} = ||e_m - e_n||_{\infty} = 1$$
 (*)

whenever $m \neq n$. It is clear that B is bounded. To show that B is also closed, we note that the norm $f: X \to \mathbb{R}$ is continuous in any normed vector space and that B is the inverse image of $(-\infty, 1]$.

Finally, suppose that B is compact. Then the sequence $\{e_n\}$ has a convergent subsequence by Theorem 2.18. Such a subsequence is actually Cauchy and this contradicts equation (*).