Homework 5. Solutions

1. Let (X,T) be a topological space and let A, B be subsets of X.
Show that the closure of their union is given by AUB = AU B.

Since AU B is a closed set that contains AU B and AU B is the
smallest closed set that contains AU B, we must certainly have

AUBC AUB.
To prove the opposite inclusion, we note that Theorem 2.5 gives

r € AUB = every neighbourhood of x intersects A or B
= every neighbourhood of z intersects AU B
= zr € AUB.
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(2. Find two open intervals A, B C R such that AN B # AN B. )

Pick any real numbers a < b < ¢ and consider the open intervals
A= (a,b), B = (b, c).
Since AN B = @, one also has AN B = @. On the other hand,

ANTB = [a,b] N b = {b}.
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3. Let (X, T) be a topological space and let A C X. Show that

0A=2 <=  Ais both open and closed in X.

If A is both open and closed in X, then the boundary of A is
IA=ANX-A=An(X-A)=2.
Conversely, suppose that 0A = @. Then Theorem 2.6 gives
A° = A.
Since A° C A C A by definition, these three sets are equal, so

A°=A=A = Ais both open and closed in X.



Homework 5. Solutions

4. Let (X, T) be a topological space and let A C X. Show that

X—-A=X-A°.

Using Theorem 2.5, one finds that

r€X — A <= every neighbourhood of z intersects X — A
<= no neighbourhood of z is contained in A
— x ¢ A°
— reX - A"
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1. Let (Y,T) be a topological space and let A C Y. Show that A is
open in Y if and only if every point of A has a neighbourhood which
lies within A. Hint: We know that A is open if and only if A = A°.

As we already know, a set A is open if and only if A = A°. On the
other hand, one always has A° C A by definition, so a set A is open
if and only if A C A°. This is true precisely when every point of A
has a neighbourhood which lies within A.
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2. Let (X,T) be a Hausdorff space. Show that the set

A={(z,y) e X x X :x #y}

is open in X x X. Hint: Use the previous problem with Y = X x X.

Let (x,y) be an arbitrary point of A. Then = # y and there exist
sets U,V which are open in X withx e U,y Vand UNV =@.
Now, the product U x V is a neighbourhood of (z,y) such that

(a,0) eUxV = a€Uand beV
= a#£b
= (a,b) € A.

It is thus a neighbourhood of (x,y) which lies within A. Using the
previous problem, we conclude that A is open in X x X.
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3. Suppose X is a Hausdorff space that has finitely many elements.
Show that every subset of X is open in X. Hint: Use Theorem 2.14.

If A is a subset of X, then its complement is a finite subset of a
Hausdorff space X, so it is closed in X. Since the complement of A
is closed in X, we conclude that A is open in X.
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4. Suppose f: X — Y is both continuous and injective. Suppose also
that Y is Hausdorff. Show that X must be Hausdorff as well.

Suppose z,y are distinct points in X. Then f(z), f(y) are distinct
points in Y by injectivity. Since Y is Hausdorff, we can always find
sets U, V which are open in Y with

f@)el, — flyyeV, UnV=a
It follows by continuity that f=*(U), f~1(V) are open in X with
ze fHU), yefi(v), Hoyniv) =2

This shows that the space X is Hausdorff as well.
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1. Show that the unit circle C = {(z,y) € R? : 22 + % = 1} is
connected. Hint: Use polar coordinates and Theorem 2.15.

In terms of polar coordinates, the points on the unit circle are the
points that have the form (cos 6,sinf). Consider the function

f:0,27) — R f(0) = (cosB,sinb).

Each component of f is continuous, so f itself is continuous. Since
the domain of f is an interval, it is connected, so the image of f is
connected as well. In other words, the unit circle C' is connected.
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[2. Let U = {(x,y) € R? : xy # 0}. How many connected components]

does this set have? Hint: One of the components is (0, 00) x (0,00).

To say that zy # 0 is to say that each of x,y is either positive or
negative. Thus, U can be expressed as the union of the sets

Uy = (0,00) x (0,00), Us = (0,00) x (—00,0),
Us = (—00,0) x (0,00), Uy = (—00,0) x (—00,0).

Each of these sets is a product of intervals and thus connected. It
remains to show that they are actually connected components.

Let A be a connected subset of U and let p;,: A — R denote
the projection on the ith variable. By continuity, each p;(A) is an
interval that does not contain 0, so it is contained in either (—o0, 0)
or (0,00). Thus, A itself is contained in one of the sets U;.
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3. Show that there is no surjective continuous function f: A — B, if

A=(0,3)U(3,6), B=(0,1)U(1,2)U(23).

Hint: Look at the restriction of f on each subinterval. You will need
to use Theorem 2.11 and also some parts of Theorem 2.15.

Note that A = A; U Ay is the union of two disjoint open intervals
and B = By U By U Bjs is the union of three disjoint open intervals.
Since f: A — B is continuous, each restriction f: A; — B must be
continuous, so each f(A;) must be connected.

Since f(A4;) is a connected subset of B; U By U B, it lies within
either By or BoU Bs. If it actually lies in By U Bs, then it lies within
either By or Bs. Thus, each f(A;) is contained in a single B; and
the function f is not surjective, contrary to assumption.
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4. Let (X,T) be a topological space and suppose A1, As,..., A, are
connected subsets of X such that Ax N Ag41 is nonempty for each k.
Show that the union of these sets is connected. Hint: Use induction.

When n = 1, the union is equal to A; and this set is connected by
assumption. Suppose that the result holds for n sets and consider
the union of n + 1 sets. This union has the form

U:AIU“‘UAnUAn+1:BUAn+1,

where B is connected by the induction hypothesis. Since A,,+1 has
a point in common with A,, it has a point in common with B. In
particular, the union B U A, 1 is connected and the result follows.
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Cl. Show that the set A = {(x,y) € R? : 22 + 4y* < 4} is compact. )

First of all, the set A is bounded because its points satisfy

<4yt <4 = |z <2
<2+ 4t <4 = |yl <1

To show that A is also closed, we consider the function
f:R? 5 R, fz,y) = 2% + 4.

Since f is continuous and (—o0,4] is closed in R, its inverse image
is closed in R2. This means that A is closed in R2. Since A is both
bounded and closed in R?, we conclude that A is compact.
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2. Show that the set B is a compact subset of R? when

B={(z,y) €ER*:2>0, y>0, 24y <1}.

First of all, the set B is bounded because its points satisfy
0<z<z+y<l, 0<y<z+y<l
To show that B is also closed, we consider the functions
hzy) ==z, falzy)=y,  falz,y) =2+
These are all continuous functions and it is easy to see that
B = f;1([0,00)) N f51([0,00)) N f3 (=00, 1]).

In particular, B is closed in R? and also bounded, so it is compact.
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3. Suppose A, B are compact subsets of a Hausdorff space X. Show
that AN B is compact. Hint: Use the first two parts of Theorem 2.19.

Since A is a compact subset of a Hausdorff space X, it is actually
closed in X. This implies that AN B is closed in B. Being a closed
subset of a compact space, A N B must also be compact.
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4. Let C),, be a sequence of nonempty, closed subsets of a compact
space X such that C,, D C),41 for each n. Show that the intersection
of these sets is nonempty. Hint: One has | J(X — C;) = X — ;.

Suppose the intersection is empty. Then we actually have

X=X—ﬁci=[j(X_Ci)a
i=1 i=1

so the sets X — C; form an open cover of X. Since X is compact,
it is covered by finitely many sets, say the first k. This gives

k k
X=JX-C)=X-(\Ci=X-C,

i=1 i=1

so the set C, must be empty, contrary to assumption.
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