
Homework 5. Solutions

1. Let (X,T ) be a topological space and let A,B be subsets of X.

Show that the closure of their union is given by A ∪B = A ∪B.

Since A ∪ B is a closed set that contains A ∪ B and A ∪B is the

smallest closed set that contains A ∪B, we must certainly have

A ∪B ⊂ A ∪B.

To prove the opposite inclusion, we note that Theorem 2.5 gives

x ∈ A ∪B =⇒ every neighbourhood of x intersects A or B

=⇒ every neighbourhood of x intersects A ∪B

=⇒ x ∈ A ∪B.
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2. Find two open intervals A,B ⊂ R such that A ∩B 6= A ∩B.

Pick any real numbers a < b < c and consider the open intervals

A = (a, b), B = (b, c).

Since A ∩B = ∅, one also has A ∩B = ∅. On the other hand,

A ∩B = [a, b] ∩ [b, c] = {b}.
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3. Let (X,T ) be a topological space and let A ⊂ X. Show that

∂A = ∅ ⇐⇒ A is both open and closed in X.

If A is both open and closed in X, then the boundary of A is

∂A = A ∩X −A = A ∩ (X −A) = ∅.

Conversely, suppose that ∂A = ∅. Then Theorem 2.6 gives

A◦ = A.

Since A◦ ⊂ A ⊂ A by definition, these three sets are equal, so

A◦ = A = A =⇒ A is both open and closed in X.
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4. Let (X,T ) be a topological space and let A ⊂ X. Show that

X −A = X −A◦.

Using Theorem 2.5, one finds that

x ∈ X −A ⇐⇒ every neighbourhood of x intersects X −A

⇐⇒ no neighbourhood of x is contained in A

⇐⇒ x /∈ A◦

⇐⇒ x ∈ X −A◦.
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1. Let (Y, T ) be a topological space and let A ⊂ Y . Show that A is

open in Y if and only if every point of A has a neighbourhood which

lies within A. Hint: We know that A is open if and only if A = A◦.

As we already know, a set A is open if and only if A = A◦. On the

other hand, one always has A◦ ⊂ A by definition, so a set A is open

if and only if A ⊂ A◦. This is true precisely when every point of A
has a neighbourhood which lies within A.
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2. Let (X,T ) be a Hausdorff space. Show that the set

A = {(x, y) ∈ X ×X : x 6= y}

is open in X ×X. Hint: Use the previous problem with Y = X ×X.

Let (x, y) be an arbitrary point of A. Then x 6= y and there exist

sets U, V which are open in X with x ∈ U , y ∈ V and U ∩ V = ∅.

Now, the product U × V is a neighbourhood of (x, y) such that

(a, b) ∈ U × V =⇒ a ∈ U and b ∈ V

=⇒ a 6= b

=⇒ (a, b) ∈ A.

It is thus a neighbourhood of (x, y) which lies within A. Using the

previous problem, we conclude that A is open in X ×X.
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3. Suppose X is a Hausdorff space that has finitely many elements.

Show that every subset of X is open in X. Hint: Use Theorem 2.14.

If A is a subset of X, then its complement is a finite subset of a

Hausdorff space X, so it is closed in X. Since the complement of A
is closed in X, we conclude that A is open in X.
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4. Suppose f : X → Y is both continuous and injective. Suppose also

that Y is Hausdorff. Show that X must be Hausdorff as well.

Suppose x, y are distinct points in X. Then f(x), f(y) are distinct

points in Y by injectivity. Since Y is Hausdorff, we can always find

sets U, V which are open in Y with

f(x) ∈ U, f(y) ∈ V, U ∩ V = ∅.

It follows by continuity that f−1(U), f−1(V ) are open in X with

x ∈ f−1(U), y ∈ f−1(V ), f−1(U) ∩ f−1(V ) = ∅.

This shows that the space X is Hausdorff as well.
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1. Show that the unit circle C = {(x, y) ∈ R
2 : x2 + y2 = 1} is

connected. Hint: Use polar coordinates and Theorem 2.15.

In terms of polar coordinates, the points on the unit circle are the

points that have the form (cos θ, sin θ). Consider the function

f : [0, 2π) → R
2, f(θ) = (cos θ, sin θ).

Each component of f is continuous, so f itself is continuous. Since

the domain of f is an interval, it is connected, so the image of f is

connected as well. In other words, the unit circle C is connected.
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2. Let U = {(x, y) ∈ R
2 : xy 6= 0}. How many connected components

does this set have? Hint: One of the components is (0,∞) × (0,∞).

To say that xy 6= 0 is to say that each of x, y is either positive or

negative. Thus, U can be expressed as the union of the sets

U1 = (0,∞)× (0,∞), U2 = (0,∞) × (−∞, 0),

U3 = (−∞, 0)× (0,∞), U4 = (−∞, 0)× (−∞, 0).

Each of these sets is a product of intervals and thus connected. It

remains to show that they are actually connected components.

Let A be a connected subset of U and let pi : A → R denote

the projection on the ith variable. By continuity, each pi(A) is an

interval that does not contain 0, so it is contained in either (−∞, 0)
or (0,∞). Thus, A itself is contained in one of the sets Uj.
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3. Show that there is no surjective continuous function f : A → B, if

A = (0, 3) ∪ (3, 6), B = (0, 1) ∪ (1, 2) ∪ (2, 3).

Hint: Look at the restriction of f on each subinterval. You will need

to use Theorem 2.11 and also some parts of Theorem 2.15.

Note that A = A1 ∪ A2 is the union of two disjoint open intervals

and B = B1 ∪B2 ∪B3 is the union of three disjoint open intervals.

Since f : A → B is continuous, each restriction f : Ai → B must be

continuous, so each f(Ai) must be connected.

Since f(Ai) is a connected subset of B1 ∪B2 ∪ B3, it lies within

either B1 or B2∪B3. If it actually lies in B2∪B3, then it lies within

either B2 or B3. Thus, each f(Ai) is contained in a single Bj and

the function f is not surjective, contrary to assumption.
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4. Let (X,T ) be a topological space and suppose A1, A2, . . . , An are

connected subsets of X such that Ak ∩ Ak+1 is nonempty for each k.
Show that the union of these sets is connected. Hint: Use induction.

When n = 1, the union is equal to A1 and this set is connected by

assumption. Suppose that the result holds for n sets and consider

the union of n+ 1 sets. This union has the form

U = A1 ∪ · · · ∪An ∪An+1 = B ∪An+1,

where B is connected by the induction hypothesis. Since An+1 has

a point in common with An, it has a point in common with B. In

particular, the union B ∪An+1 is connected and the result follows.
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1. Show that the set A = {(x, y) ∈ R
2 : x2 + 4y4 ≤ 4} is compact.

First of all, the set A is bounded because its points satisfy

x2 ≤ x2 + 4y4 ≤ 4 =⇒ |x| ≤ 2,

4y4 ≤ x2 + 4y4 ≤ 4 =⇒ |y| ≤ 1.

To show that A is also closed, we consider the function

f : R2 → R, f(x, y) = x2 + 4y4.

Since f is continuous and (−∞, 4] is closed in R, its inverse image

is closed in R
2. This means that A is closed in R

2. Since A is both

bounded and closed in R
2, we conclude that A is compact.
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2. Show that the set B is a compact subset of R2 when

B = {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0, x+ y ≤ 1}.

First of all, the set B is bounded because its points satisfy

0 ≤ x ≤ x+ y ≤ 1, 0 ≤ y ≤ x+ y ≤ 1.

To show that B is also closed, we consider the functions

f1(x, y) = x, f2(x, y) = y, f3(x, y) = x+ y.

These are all continuous functions and it is easy to see that

B = f−1

1
([0,∞)) ∩ f−1

2
([0,∞)) ∩ f−1

3
((−∞, 1]).

In particular, B is closed in R
2 and also bounded, so it is compact.
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3. Suppose A,B are compact subsets of a Hausdorff space X. Show

that A∩B is compact. Hint: Use the first two parts of Theorem 2.19.

Since A is a compact subset of a Hausdorff space X, it is actually

closed in X. This implies that A ∩B is closed in B. Being a closed

subset of a compact space, A ∩B must also be compact.
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4. Let Cn be a sequence of nonempty, closed subsets of a compact

space X such that Cn ⊃ Cn+1 for each n. Show that the intersection

of these sets is nonempty. Hint: One has
⋃
(X − Ci) = X −

⋂
Ci.

Suppose the intersection is empty. Then we actually have

X = X −

∞⋂

i=1

Ci =

∞⋃

i=1

(X − Ci),

so the sets X − Ci form an open cover of X. Since X is compact,

it is covered by finitely many sets, say the first k. This gives

X =

k⋃

i=1

(X −Ci) = X −

k⋂

i=1

Ci = X − Ck,

so the set Ck must be empty, contrary to assumption.
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