Homework 1. Solutions

(1. Show that the discrete metric satisfies the properties of a metric. )

The discrete metric is defined by the formula

awn={ g ozl

It is clearly symmetric and non-negative with d(x,y) = 0 if and only
if x = y. It remains to establish the triangle inequality

d(z,y) < d(z,z) +d(z,y).

If © = y, then the left hand side is zero and the inequality certainly
holds. If z # y, then the left hand side is equal to 1. Since x # vy,
we must have either z # x or else z # y. Thus, the right hand side
is at least 1 and the triangle inequality holds in any case.



Homework 1. Solutions

[2. Compute the distances d;(f,g) and d(f,g) when f,g € C]0, 1]]

are the functions defined by f(z) = 22 and g(z) = 3.

Since x2 > 3 for all z € [0, 1], the first distance is given by
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To compute the second distance, we need to find the maximum of
h(z) = 2* — 23, 0<z<l1.
Since W (z) = 22 — 32% = (2 — 3x), it easily follows that

doo(fsg) = h(2/3) = 4/9 — 8/27 = 4/27.



Homework 1. Solutions

C3. Sketch the open ball B((0,0),1) in the metric space (R?, dy). )

The open ball B((0,0),1) contains the points (z,y) that satisfy
doo((x,9),(0,0)) = max{|z|, |y|} < 1.

Now, the maximum of two numbers is smaller than 1 if and only if
the two numbers are both smaller than 1. This gives the condition

|z] <1 and J|y| <1.

Thus, the open ball B((0,0),1) is the interior of the square whose
vertices are located at the points (1, +1).



Homework 1. Solutions

4. Let A= {xz € R:z > 0}. Is this set bounded in (R, d) when d is
the usual metric? Is it bounded when d is the discrete metric?

This set is not bounded with respect to the usual metric. If it were
bounded, then we would have

AC(x—rxz+r)
for some z € R and some r > 0. This is not the case because
lz| +1r € A, lz|+r ¢ (x —r,x+7r).

To show that A is bounded with respect to the discrete metric, we
note that A is contained in B(z,2) = R for any z € R.



Homework 1. Solutions

5. Consider a metric space (X, d) whose metric d is discrete. Show
that every subset A C X is open in X.

Let z € A and consider the open ball B(z,1). Since d is discrete,
this open ball is equal to {z}, so it is contained entirely within A.



Homework 2. Solutions

number r > 0, show that U = {y € X : d(x,y) > r} is open in X.

[1. Let (X,d) be a metric space. Given a point z € X and a real]

Let y € U. Then € = d(z,y) — r is positive and we have

z € B(y,e) =
_—
_—
_—

d(y,z) <e

r+d(y,z) <d(z,y) <d(z,z)+d(z,y)
r<d(z,z)

zeU.

This shows that B(y,e) C U and that the set U is open.
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2. Show that each of the following sets is closed in R.

A =10,00), B =17, C={zeR:sinz <0}

The complements of the given sets can be expressed in the form

R - A=(-00,0)= | (-n,0),

neN
R-B=|J@z+1),
TEL
R-C={zeR:sinz >0} = U(2k7r,2k7r+7r).

kEZ

These are all unions of open intervals, so they are all open in R.
Thus, the given sets A, B, C' are all closed in R.
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(3. Find a collection of closed subsets of R whose union is not closed. >

Needless to say, there are several examples. One typical example is

An=1/n2] = [JA.=(0,2]
neN

More generally, let {z,,} be any strictly decreasing sequence of real
numbers whose limit x is finite. Then it is easy to see that

An = [mmy] - U An = (gj’y]
neN



Homework 2. Solutions

[4. Let (X,dx) and (Y,dy) be metric spaces. Assuming that dx isj

discrete, show that any function f: X — Y is continuous.

Let x € X and € > 0 be given. Then we have

y € B(z,1) y=ux
(y) = f(z)

fy) € B(f(x),¢).

This shows that f is continuous at the point x.
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[1. Consider the sequence of functions defined by fn(2) = 15 for]

all z > 0. Show that this sequence converges uniformly on [0, c0).

It is clear that f,,(x) converges pointwise to the zero function. To
show that it converges uniformly, we compute the supremum of

X

gn(z) = |fulz) = 0| = 1T n2a?

on the interval [0, 00). Using the quotient rule, we get

, 1+ n%2? — 2n%2? 1 — n%a?
(@) =

(1+n2%2  (1+n2?)

and so g, attains its maximum at the point x = 1/n. In particular,
the supremum is g, (1/n) = 1/(2n) and it goes to zero as n — 0.
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2. Let (X,d) be a metric space, let f,: X — R be a sequence of
continuous functions such that f, — f uniformly on X and let x,, be
a sequence of points of X with z,, — x. Show that f,(x,) — f(z).

Let € > 0 be given. Then there exists an integer N; such that
|fn(z) — f(x)] <e/2 foralln > Njandall z € X.

Since f,, — f uniformly, the limit f is continuous. Since z, — =z,
we must also have f(x,) — f(z). Pick an integer N2 such that

|f(zn) — f(x)] <eg/2 forall n> Na.
Given any integer n > max{Ny, Na}, we must then have

[fn(@n) = f(@)] < [falzn) = flza)| + | f(zn) = f(2)] <e.
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3. Let f: X — Y be a function between metric spaces and let x,, be
a Cauchy sequence in X. Show that f(x,) must also be Cauchy, if f
is Lipschitz continuous. Is the same true, if f is merely continuous?

Suppose that f is Lipschitz continuous with constant L > 0. Given
any € > 0, we can then find an integer N such that

d(xpm,xn) < e/L forall m,n > N.
Since f is Lipschitz continuous, this also implies that
d(f(zm), f(zn)) < L-d(xm,zn) <e forall m,n>N

and so f(x,) is Cauchy. When f is merely continuous, the result is
not true. For instance, z,, = 1/n is Cauchy in R and f(x) = 1/x is
continuous, but f(x,) = n is certainly not Cauchy.



Homework 3. Solutions

(4. Show that (X, d) is complete, if the metric d is discrete. )

Suppose that z,, is a Cauchy sequence in X. Then there exists an
integer N such that

d(xm,xy) <1 forall myn> N.
Since the metric d is discrete, this actually means that
Ty = x, forallm,n > N.
Given any € > 0, we must then have
d(zp,zn) =d(zy,zy) <e foralln> N.

In other words, we must have z,, — z as n — oo.
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[1. Let f: R — R be continuous and let A = {z € R: f(z) > 0}]

Show that A is closed in R and conclude that A is complete.

The set U = (—00,0) is open in R because it can be written as

U=(-0,0)= | J(-n,0)

neN

and this is a union of open intervals. Since f is continuous,
AU ={z eR: f(x) e U} ={z €R: f(x) <0}

is then open in R. Thus, the complement of f~1(U) is closed and
this means that A is closed. Since R is complete and A is a closed
subset of R, we conclude that A is complete.



Homework 4. Solutions

2. Suppose f: [a,b] — [a,b] is a differentiable function such that

L= sup |f'(z)]
a<z<b

satisfies L < 1. Show that f has a unique fixed point in [a, b].

Let x,y € [a,b]. Using the mean value theorem, one finds that

[f@) = fWl=1f Ol lz -yl <L |z —y|

for some point ¢ between x and y. Since L < 1 by assumption, this
shows that f is a contraction on [a, b]. On the other hand, [a,)] is a
closed subset of R and thus complete. It follows by Banach's fixed
point theorem that f has a unique fixed point in [a, b].



Homework 4. Solutions

[3. Show that there is a unique real number x such that cosz = x]

Hint: Such a number must lie in [—1, 1]. Use the previous problem.

Since f(z) = cosx is between —1 and 1 for all x, every fixed point
of f must lie in the interval [—1,1]. Note that

L= sup |f'(x)|= sup [sinz|= sup sinx =sinl
—1<z<1 —1<z<1 0<z<1

is strictly less than 1. In view of the previous problem, f must have
a unique fixed point in [—1,1], so it has a unique fixed point in R.
Thus, there is a unique real number z such that f(z) = x.



Homework 4. Solutions

<4. Show that the set QQ of all rational numbers is not complete. )

Consider a sequence of rational numbers that converges to v/2, say

r1 = 1.4
To = 1.41
T3 = 1.414

and so on. This sequence is convergent in R, so it is Cauchy, but it
is not convergent in Q because its limit is irrational.
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