
Homework 1. Solutions

1. Show that the discrete metric satisfies the properties of a metric.

The discrete metric is defined by the formula

d(x, y) =

{

1 if x 6= y
0 if x = y

}

.

It is clearly symmetric and non-negative with d(x, y) = 0 if and only

if x = y. It remains to establish the triangle inequality

d(x, y) ≤ d(x, z) + d(z, y).

If x = y, then the left hand side is zero and the inequality certainly

holds. If x 6= y, then the left hand side is equal to 1. Since x 6= y,
we must have either z 6= x or else z 6= y. Thus, the right hand side

is at least 1 and the triangle inequality holds in any case.



Homework 1. Solutions

2. Compute the distances d1(f, g) and d∞(f, g) when f, g ∈ C[0, 1]
are the functions defined by f(x) = x2 and g(x) = x3.

Since x2 ≥ x3 for all x ∈ [0, 1], the first distance is given by

d1(f, g) =

∫

1

0

(x2 − x3) dx =

[

x3

3
−

x4

4

]1

0

=
1

3
−

1

4
=

1

12
.

To compute the second distance, we need to find the maximum of

h(x) = x2 − x3, 0 ≤ x ≤ 1.

Since h′(x) = 2x− 3x2 = x(2− 3x), it easily follows that

d∞(f, g) = h(2/3) = 4/9 − 8/27 = 4/27.
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3. Sketch the open ball B((0, 0), 1) in the metric space (R2, d∞).

The open ball B((0, 0), 1) contains the points (x, y) that satisfy

d∞((x, y), (0, 0)) = max{|x|, |y|} < 1.

Now, the maximum of two numbers is smaller than 1 if and only if

the two numbers are both smaller than 1. This gives the condition

|x| < 1 and |y| < 1.

Thus, the open ball B((0, 0), 1) is the interior of the square whose

vertices are located at the points (±1,±1).
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4. Let A = {x ∈ R : x > 0}. Is this set bounded in (R, d) when d is

the usual metric? Is it bounded when d is the discrete metric?

This set is not bounded with respect to the usual metric. If it were

bounded, then we would have

A ⊂ (x− r, x+ r)

for some x ∈ R and some r > 0. This is not the case because

|x|+ r ∈ A, |x|+ r /∈ (x− r, x+ r).

To show that A is bounded with respect to the discrete metric, we

note that A is contained in B(x, 2) = R for any x ∈ R.
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5. Consider a metric space (X, d) whose metric d is discrete. Show

that every subset A ⊂ X is open in X.

Let x ∈ A and consider the open ball B(x, 1). Since d is discrete,

this open ball is equal to {x}, so it is contained entirely within A.
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1. Let (X, d) be a metric space. Given a point x ∈ X and a real

number r > 0, show that U = {y ∈ X : d(x, y) > r} is open in X.

Let y ∈ U . Then ε = d(x, y)− r is positive and we have

z ∈ B(y, ε) =⇒ d(y, z) < ε

=⇒ r + d(y, z) < d(x, y) ≤ d(x, z) + d(z, y)

=⇒ r < d(x, z)

=⇒ z ∈ U.

This shows that B(y, ε) ⊂ U and that the set U is open.
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2. Show that each of the following sets is closed in R.

A = [0,∞), B = Z, C = {x ∈ R : sinx ≤ 0}.

The complements of the given sets can be expressed in the form

R−A = (−∞, 0) =
⋃

n∈N

(−n, 0),

R−B =
⋃

x∈Z

(x, x+ 1),

R− C = {x ∈ R : sinx > 0} =
⋃

k∈Z

(2kπ, 2kπ + π).

These are all unions of open intervals, so they are all open in R.

Thus, the given sets A,B,C are all closed in R.
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3. Find a collection of closed subsets of R whose union is not closed.

Needless to say, there are several examples. One typical example is

An = [1/n, 2] =⇒
⋃

n∈N

An = (0, 2].

More generally, let {xn} be any strictly decreasing sequence of real

numbers whose limit x is finite. Then it is easy to see that

An = [xn, y] =⇒
⋃

n∈N

An = (x, y].
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4. Let (X, dX) and (Y, dY ) be metric spaces. Assuming that dX is

discrete, show that any function f : X → Y is continuous.

Let x ∈ X and ε > 0 be given. Then we have

y ∈ B(x, 1) =⇒ y = x

=⇒ f(y) = f(x)

=⇒ f(y) ∈ B(f(x), ε).

This shows that f is continuous at the point x.
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1. Consider the sequence of functions defined by fn(x) =
x

1+n2x2 for

all x ≥ 0. Show that this sequence converges uniformly on [0,∞).

It is clear that fn(x) converges pointwise to the zero function. To

show that it converges uniformly, we compute the supremum of

gn(x) = |fn(x)− 0| =
x

1 + n2x2

on the interval [0,∞). Using the quotient rule, we get

g′n(x) =
1 + n2x2 − 2n2x2

(1 + n2x2)2
=

1− n2x2

(1 + n2x2)2

and so gn attains its maximum at the point x = 1/n. In particular,

the supremum is gn(1/n) = 1/(2n) and it goes to zero as n → ∞.
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2. Let (X, d) be a metric space, let fn : X → R be a sequence of

continuous functions such that fn → f uniformly on X and let xn be

a sequence of points of X with xn → x. Show that fn(xn) → f(x).

Let ε > 0 be given. Then there exists an integer N1 such that

|fn(x)− f(x)| < ε/2 for all n ≥ N1 and all x ∈ X.

Since fn → f uniformly, the limit f is continuous. Since xn → x,
we must also have f(xn) → f(x). Pick an integer N2 such that

|f(xn)− f(x)| < ε/2 for all n ≥ N2.

Given any integer n ≥ max{N1, N2}, we must then have

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| < ε.
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3. Let f : X → Y be a function between metric spaces and let xn be

a Cauchy sequence in X. Show that f(xn) must also be Cauchy, if f
is Lipschitz continuous. Is the same true, if f is merely continuous?

Suppose that f is Lipschitz continuous with constant L > 0. Given

any ε > 0, we can then find an integer N such that

d(xm, xn) < ε/L for all m,n ≥ N .

Since f is Lipschitz continuous, this also implies that

d(f(xm), f(xn)) ≤ L · d(xm, xn) < ε for all m,n ≥ N

and so f(xn) is Cauchy. When f is merely continuous, the result is

not true. For instance, xn = 1/n is Cauchy in R and f(x) = 1/x is

continuous, but f(xn) = n is certainly not Cauchy.
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4. Show that (X, d) is complete, if the metric d is discrete.

Suppose that xn is a Cauchy sequence in X. Then there exists an

integer N such that

d(xm, xn) < 1 for all m,n ≥ N .

Since the metric d is discrete, this actually means that

xm = xn for all m,n ≥ N .

Given any ε > 0, we must then have

d(xn, xN ) = d(xN , xN ) < ε for all n ≥ N .

In other words, we must have xn → xN as n → ∞.
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1. Let f : R → R be continuous and let A = {x ∈ R : f(x) ≥ 0}.
Show that A is closed in R and conclude that A is complete.

The set U = (−∞, 0) is open in R because it can be written as

U = (−∞, 0) =
⋃

n∈N

(−n, 0)

and this is a union of open intervals. Since f is continuous,

f−1(U) = {x ∈ R : f(x) ∈ U} = {x ∈ R : f(x) < 0}

is then open in R. Thus, the complement of f−1(U) is closed and

this means that A is closed. Since R is complete and A is a closed

subset of R, we conclude that A is complete.
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2. Suppose f : [a, b] → [a, b] is a differentiable function such that

L = sup
a≤x≤b

|f ′(x)|

satisfies L < 1. Show that f has a unique fixed point in [a, b].

Let x, y ∈ [a, b]. Using the mean value theorem, one finds that

|f(x)− f(y)| = |f ′(c)| · |x− y| ≤ L · |x− y|

for some point c between x and y. Since L < 1 by assumption, this

shows that f is a contraction on [a, b]. On the other hand, [a, b] is a
closed subset of R and thus complete. It follows by Banach’s fixed

point theorem that f has a unique fixed point in [a, b].
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3. Show that there is a unique real number x such that cos x = x.
Hint: Such a number must lie in [−1, 1]. Use the previous problem.

Since f(x) = cos x is between −1 and 1 for all x, every fixed point

of f must lie in the interval [−1, 1]. Note that

L = sup
−1≤x≤1

|f ′(x)| = sup
−1≤x≤1

| sinx| = sup
0≤x≤1

sinx = sin 1

is strictly less than 1. In view of the previous problem, f must have

a unique fixed point in [−1, 1], so it has a unique fixed point in R.

Thus, there is a unique real number x such that f(x) = x.
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4. Show that the set Q of all rational numbers is not complete.

Consider a sequence of rational numbers that converges to
√
2, say

x1 = 1.4

x2 = 1.41

x3 = 1.414

and so on. This sequence is convergent in R, so it is Cauchy, but it

is not convergent in Q because its limit is irrational.
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