1. Show that the discrete metric satisfies the properties of a metric.

The discrete metric is defined by the formula

$$d(x,y) = \left\{ \begin{array}{ll} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{array} \right\}.$$

It is clearly symmetric and non-negative with d(x,y)=0 if and only if x=y. It remains to establish the triangle inequality

$$d(x,y) \le d(x,z) + d(z,y).$$

If x=y, then the left hand side is zero and the inequality certainly holds. If $x\neq y$, then the left hand side is equal to 1. Since $x\neq y$, we must have either $z\neq x$ or else $z\neq y$. Thus, the right hand side is at least 1 and the triangle inequality holds in any case.

2. Compute the distances $d_1(f,g)$ and $d_\infty(f,g)$ when $f,g\in C[0,1]$ are the functions defined by $f(x)=x^2$ and $g(x)=x^3$.

Since $x^2 \ge x^3$ for all $x \in [0,1]$, the first distance is given by

$$d_1(f,g) = \int_0^1 (x^2 - x^3) \, dx = \left[\frac{x^3}{3} - \frac{x^4}{4} \right]_0^1 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

To compute the second distance, we need to find the maximum of

$$h(x) = x^2 - x^3, \qquad 0 \le x \le 1.$$

Since $h'(x) = 2x - 3x^2 = x(2 - 3x)$, it easily follows that

$$d_{\infty}(f,g) = h(2/3) = 4/9 - 8/27 = 4/27.$$

3. Sketch the open ball B((0,0),1) in the metric space (\mathbb{R}^2,d_∞) .

The open ball B((0,0),1) contains the points (x,y) that satisfy

$$d_{\infty}((x,y),(0,0)) = \max\{|x|,|y|\} < 1.$$

Now, the maximum of two numbers is smaller than 1 if and only if the two numbers are both smaller than 1. This gives the condition

$$|x|<1 \quad \text{and} \quad |y|<1.$$

Thus, the open ball B((0,0),1) is the interior of the square whose vertices are located at the points $(\pm 1,\pm 1)$.

4. Let $A = \{x \in \mathbb{R} : x > 0\}$. Is this set bounded in (\mathbb{R}, d) when d is the usual metric? Is it bounded when d is the discrete metric?

This set is not bounded with respect to the usual metric. If it were bounded, then we would have

$$A \subset (x-r, x+r)$$

for some $x \in \mathbb{R}$ and some r > 0. This is not the case because

$$|x| + r \in A$$
, $|x| + r \notin (x - r, x + r)$.

To show that A is bounded with respect to the discrete metric, we note that A is contained in $B(x,2)=\mathbb{R}$ for any $x\in\mathbb{R}$.

5. Consider a metric space (X,d) whose metric d is discrete. Show that every subset $A\subset X$ is open in X.

Let $x \in A$ and consider the open ball B(x,1). Since d is discrete, this open ball is equal to $\{x\}$, so it is contained entirely within A.

1. Let (X,d) be a metric space. Given a point $x\in X$ and a real number r>0, show that $U=\{y\in X: d(x,y)>r\}$ is open in X.

Let $y \in U$. Then $\varepsilon = d(x,y) - r$ is positive and we have

$$z \in B(y,\varepsilon) \implies d(y,z) < \varepsilon$$

$$\implies r + d(y,z) < d(x,y) \le d(x,z) + d(z,y)$$

$$\implies r < d(x,z)$$

$$\implies z \in U.$$

This shows that $B(y,\varepsilon)\subset U$ and that the set U is open.

2. Show that each of the following sets is closed in \mathbb{R} .

$$A = [0, \infty),$$
 $B = \mathbb{Z},$ $C = \{x \in \mathbb{R} : \sin x \le 0\}.$

The complements of the given sets can be expressed in the form

$$\mathbb{R} - A = (-\infty, 0) = \bigcup_{n \in \mathbb{N}} (-n, 0),$$

$$\mathbb{R} - B = \bigcup_{x \in \mathbb{Z}} (x, x + 1),$$

$$\mathbb{R} - C = \{x \in \mathbb{R} : \sin x > 0\} = \bigcup_{k \in \mathbb{Z}} (2k\pi, 2k\pi + \pi).$$

These are all unions of open intervals, so they are all open in \mathbb{R} . Thus, the given sets A,B,C are all closed in \mathbb{R} .

3. Find a collection of closed subsets of \mathbb{R} whose union is not closed.

Needless to say, there are several examples. One typical example is

$$A_n = [1/n, 2] \implies \bigcup_{n \in \mathbb{N}} A_n = (0, 2].$$

More generally, let $\{x_n\}$ be any strictly decreasing sequence of real numbers whose limit x is finite. Then it is easy to see that

$$A_n = [x_n, y] \implies \bigcup_{n \in \mathbb{N}} A_n = (x, y].$$

4. Let (X,d_X) and (Y,d_Y) be metric spaces. Assuming that d_X is discrete, show that any function $f\colon X\to Y$ is continuous.

Let $x \in X$ and $\varepsilon > 0$ be given. Then we have

$$y \in B(x,1)$$
 \Longrightarrow $y = x$
 \Longrightarrow $f(y) = f(x)$
 \Longrightarrow $f(y) \in B(f(x), \varepsilon).$

This shows that f is continuous at the point x.

1. Consider the sequence of functions defined by $f_n(x) = \frac{x}{1+n^2x^2}$ for all $x \ge 0$. Show that this sequence converges uniformly on $[0, \infty)$.

It is clear that $f_n(x)$ converges pointwise to the zero function. To show that it converges uniformly, we compute the supremum of

$$g_n(x) = |f_n(x) - 0| = \frac{x}{1 + n^2 x^2}$$

on the interval $[0,\infty)$. Using the quotient rule, we get

$$g'_n(x) = \frac{1 + n^2 x^2 - 2n^2 x^2}{(1 + n^2 x^2)^2} = \frac{1 - n^2 x^2}{(1 + n^2 x^2)^2}$$

and so g_n attains its maximum at the point x=1/n. In particular, the supremum is $g_n(1/n)=1/(2n)$ and it goes to zero as $n\to\infty$.

2. Let (X,d) be a metric space, let $f_n\colon X\to\mathbb{R}$ be a sequence of continuous functions such that $f_n\to f$ uniformly on X and let x_n be a sequence of points of X with $x_n\to x$. Show that $f_n(x_n)\to f(x)$.

Let $\varepsilon > 0$ be given. Then there exists an integer N_1 such that

$$|f_n(x) - f(x)| < \varepsilon/2$$
 for all $n \ge N_1$ and all $x \in X$.

Since $f_n \to f$ uniformly, the limit f is continuous. Since $x_n \to x$, we must also have $f(x_n) \to f(x)$. Pick an integer N_2 such that

$$|f(x_n) - f(x)| < \varepsilon/2$$
 for all $n \ge N_2$.

Given any integer $n \ge \max\{N_1, N_2\}$, we must then have

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| < \varepsilon.$$

3. Let $f: X \to Y$ be a function between metric spaces and let x_n be a Cauchy sequence in X. Show that $f(x_n)$ must also be Cauchy, if f is Lipschitz continuous. Is the same true, if f is merely continuous?

Suppose that f is Lipschitz continuous with constant L>0. Given any $\varepsilon>0$, we can then find an integer N such that

$$d(x_m, x_n) < \varepsilon/L$$
 for all $m, n \ge N$.

Since f is Lipschitz continuous, this also implies that

$$d(f(x_m), f(x_n)) \le L \cdot d(x_m, x_n) < \varepsilon$$
 for all $m, n \ge N$

and so $f(x_n)$ is Cauchy. When f is merely continuous, the result is not true. For instance, $x_n=1/n$ is Cauchy in $\mathbb R$ and f(x)=1/x is continuous, but $f(x_n)=n$ is certainly not Cauchy.

4. Show that (X, d) is complete, if the metric d is discrete.

Suppose that x_n is a Cauchy sequence in X. Then there exists an integer N such that

$$d(x_m, x_n) < 1$$
 for all $m, n \ge N$.

Since the metric d is discrete, this actually means that

$$x_m = x_n$$
 for all $m, n \ge N$.

Given any $\varepsilon > 0$, we must then have

$$d(x_n, x_N) = d(x_N, x_N) < \varepsilon$$
 for all $n \ge N$.

In other words, we must have $x_n \to x_N$ as $n \to \infty$.

1. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and let $A = \{x \in \mathbb{R} : f(x) \ge 0\}$. Show that A is closed in \mathbb{R} and conclude that A is complete.

The set $U=(-\infty,0)$ is open in $\mathbb R$ because it can be written as

$$U = (-\infty, 0) = \bigcup_{n \in \mathbb{N}} (-n, 0)$$

and this is a union of open intervals. Since f is continuous,

$$f^{-1}(U) = \{x \in \mathbb{R} : f(x) \in U\} = \{x \in \mathbb{R} : f(x) < 0\}$$

is then open in \mathbb{R} . Thus, the complement of $f^{-1}(U)$ is closed and this means that A is closed. Since \mathbb{R} is complete and A is a closed subset of \mathbb{R} , we conclude that A is complete.

2. Suppose $f:[a,b] \rightarrow [a,b]$ is a differentiable function such that

$$L = \sup_{a \le x \le b} |f'(x)|$$

satisfies L < 1. Show that f has a unique fixed point in [a, b].

Let $x, y \in [a, b]$. Using the mean value theorem, one finds that

$$|f(x) - f(y)| = |f'(c)| \cdot |x - y| \le L \cdot |x - y|$$

for some point c between x and y. Since L<1 by assumption, this shows that f is a contraction on [a,b]. On the other hand, [a,b] is a closed subset of $\mathbb R$ and thus complete. It follows by Banach's fixed point theorem that f has a unique fixed point in [a,b].

3. Show that there is a unique real number x such that $\cos x = x$. Hint: Such a number must lie in [-1,1]. Use the previous problem.

Since $f(x) = \cos x$ is between -1 and 1 for all x, every fixed point of f must lie in the interval [-1,1]. Note that

$$L = \sup_{-1 \le x \le 1} |f'(x)| = \sup_{-1 \le x \le 1} |\sin x| = \sup_{0 \le x \le 1} \sin x = \sin 1$$

is strictly less than 1. In view of the previous problem, f must have a unique fixed point in [-1,1], so it has a unique fixed point in \mathbb{R} . Thus, there is a unique real number x such that f(x)=x.

4. Show that the set \mathbb{Q} of all rational numbers is not complete.

Consider a sequence of rational numbers that converges to $\sqrt{2}$, say

$$x_1 = 1.4$$

$$x_2 = 1.41$$

$$x_3 = 1.414$$

and so on. This sequence is convergent in \mathbb{R} , so it is Cauchy, but it is not convergent in \mathbb{Q} because its limit is irrational.