
Maths 212: Homework Solutions

95. Letting x = (x1, x2, . . .) and y = (y1, y2, . . .), we may use the triangle inequality to get

||x + y||pp =
∑

i

|xi + yi| · |xi + yi|p−1

≤
∑

i

|xi| · |xi + yi|p−1 +
∑

i

|yi| · |xi + yi|p−1.

Next, we apply Hölder’s inequality. Since q = p/(p−1) is such that 1/p+1/q = 1, we find

∑

i

|xi| · |xi + yi|p−1 ≤
(

∑

i

|xi|p
)1/p (

∑

i

|xi + yi|(p−1)q

)1/q

= ||x||p · ||x + y||p/q
p

because (p − 1)q = p by above. Note that a similar argument applies to give
∑

i

|yi| · |xi + yi|p−1 ≤ ||y||p · ||x + y||p/q
p

as well. Once we now combine the last three equations, we arrive at

||x + y||pp ≤
(
||x||p + ||y||p

)
· ||x + y||p/q

p .

In the case that ||x + y||p is nonzero, this implies the desired inequality

||x + y||p = ||x + y||p−p/q
p ≤ ||x||p + ||y||p.

When ||x + y||p is zero, on the other hand, the desired inequality holds trivially.

96. Suppose that xn = (xn1, xn2, . . .) is a Cauchy sequence in ℓp and let ε > 0. Then

|xmk − xnk|p ≤
∞∑

k=1

|xmk − xnk|p = ||xm − xn||pp < εp

for large enough m,n. This means that xnk is a Cauchy sequence in R for each k, so xnk

converges for each k. Suppose xnk → ak for each k and set a = (a1, a2, . . .). Since

∞∑

k=1

|xmk − xnk|p < εp

for large enough m,n by above, we may let n → ∞ to find that
∞∑

k=1

|xmk − ak|p < εp =⇒ ||xm − a||p < ε

for large enough m. This shows that our sequence xm converges to a. Moreover,

||a||p ≤ ||a − xm||p + ||xm||p < ε + ||xm||p
for large enough m by above, so we also have a ∈ ℓp, as needed.



97. Linearity is rather easy to establish. To see that T is also bounded, we note that

∞∑

i=1

a2
i x2

i ≤ ||a||2∞
∞∑

i=1

x2
i =⇒ ||Tx||2 ≤ ||a||∞||x||2.

This implies the inequality ||T || ≤ ||a||∞. Let us now consider the sequence

yk = (0, . . . , 0, 1, 0, . . .)

whose coordinates are all zero, except for the kth one, which is equal to 1. Noting that

Tyk = (0, . . . , 0, ak, 0, . . .) =⇒ ||Tyk||2 = |ak| = |ak| · ||yk||2,

we find that ||T || ≥ |ak| for each k. Taking the supremum of both sides, we thus find

||T || ≥ sup
k

|ak| = ||a||∞ =⇒ ||T || = ||a||∞.

98. Pick an element a = (a1, a2, . . .) in ℓp and consider its truncated version

xn = (a1, a2, . . . , an, 0, 0, . . .) ∈ ℓ0.

Since the series
∑

|ak|p converges by assumption, it is clear that

||xn − a||pp =
∞∑

k=n+1

|ak|p −→ 0 as n → ∞.

This shows that the sequence xn of points in ℓ0 converges to a, namely that a ∈ Cl ℓ0.

99. Suppose that xn = (xn1, xn2, . . .) is a Cauchy sequence in C0 and let ε > 0. Then

|xmk − xnk| ≤ sup
k

|xmk − xnk| = d∞(xm, xn) < ε

for large enough m,n. This shows that xnk is a Cauchy sequence in R for each k, so xnk

converges for each k. Suppose xnk → ak for each k and set a = (a1, a2, . . .). Since

|xmk − xnk| ≤ sup
k

|xmk − xnk| < ε

for large enough m,n by above, we may let n → ∞ to find that

|xmk − ak| < ε =⇒ d∞(xm, a) = sup
k

|xmk − ak| ≤ ε

for large enough m. This shows that our sequence xm converges to a. Moreover,

|ak| ≤ |ak − xmk| + |xmk| ≤ d∞(a, xm) + |xmk|.

Letting k → ∞ and then m → ∞, one now finds that a ∈ C0, as needed.
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100a. Using the ℓ1-norm for ℓ0, one easily finds that

|Tx| ≤
∞∑

n=1

|xn| = ||x||1 =⇒ ||T || ≤ 1.

In particular, T is a bounded linear transformation, hence also continuous.

100b. Define a sequence xn of elements of ℓ0 by setting

x1 = (1, 0, 0, . . .), x2 = (1, 1, 0, 0, . . .), x3 = (1, 1, 1, 0, 0, . . .),

and so on. Then we have Txn = n and also ||xn||2 =
√

n for each n, hence

|Txn|
||xn||2

=
√

n

fails to be bounded. In particular, T fails to be continuous as well.

101. Linearity is rather easy to establish. To see that A is also bounded, we note that

|x1 + . . . + xn| ≤ n · ||x||∞ =⇒ ||Ax||∞ ≤ ||x||∞ =⇒ ||A|| ≤ 1.

Since the element y = (1, 1, 1, . . .) is such that

Ay =

(
1,

1 + 1

2
,

1 + 1 + 1

3
, . . .

)
= (1, 1, 1, . . .) = y,

we also have

||A|| = sup
x 6=0

||Ax||
||x|| ≥ ||Ay||

||y|| = 1.

102. Using Hölder’s inequality, one easily finds that

|Tx| ≤
∞∑

i=1

|ai xi| ≤ ||a||q · ||x||p

for each x = (x1, x2, . . .) in ℓp. This implies the inequality ||T || ≤ ||a||q.

• Next, we consider the sequence y = (y1, y2, . . .) which is obtained by setting

yi = |ai|q/p · sign ai

for each i. To see that y is an element of ℓp, we need only note that

||y||pp =
∞∑

i=1

|yi|p =
∞∑

i=1

|ai|q = ||a||qq
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is finite by assumption. Using the fact that

1

p
+

1

q
= 1 =⇒ q

p
+ 1 = q,

one now easily finds

Ty =
∞∑

i=1

|ai|q/p · ai sign ai =
∞∑

i=1

|ai|q/p+1 =
∞∑

i=1

|ai|q = ||a||qq.

Combining our computations above, we thus arrive at

Ty = ||a||qq = ||a||q/p+1
q = ||y||p · ||a||q =⇒ ||T || ≥ ||a||q.

103. Suppose X is contractible and let a, b ∈ X be arbitrary. Since X is contractible, one can
always find a homotopy F : X × I → X between the identity function and the constant
map f(x) = b. This also gives rise to a path γ(t) = F (a, t) between a and b, since

γ(0) = F (a, 0) = a, γ(1) = F (a, 1) = b.

104. Let F : X × I → Y be a homotopy between the fi’s and G : Y × I → Z be a homotopy
between the gi’s. Then the function H(x, t) = G(F (x, t), t) is continuous with

H(x, 0) = G(F (x, 0), 0) = G(f0(x), 0) = g0(f0(x)) = (g0 ◦ f0)(x),

H(x, 1) = G(F (x, 1), 1) = G(f1(x), 1) = g1(f1(x)) = (g1 ◦ f1)(x).

In other words, H : X × I → Z is a homotopy between g0 ◦ f0 and g1 ◦ f1.

105. Since γ = α ∗ β is a path from x to z, the function γ̂ : π1(X, x) → π1(X, z) is defined by

γ̂([f ]) = [γ] ∗ [f ] ∗ [γ]

for each loop f around x. To simplify this expression, we note that

[ex] = [γ] ∗ [γ] = [α] ∗ [β] ∗ [γ] =⇒ [α] = [β] ∗ [γ] =⇒ [β] ∗ [α] = [γ].

Once we now combine the last two equations, we find that

γ̂([f ]) = [β] ∗ [α] ∗ [f ] ∗ [α] ∗ [β] = [β] ∗ α̂([f ]) ∗ [β] = β̂(α̂([f ])).

106. Suppose that γ0, γ1 : I → X are two paths having the same endpoints and set

F (s, t) = (1 − t)γ0(s) + tγ1(s) for all s, t ∈ I.

Due to the convexity of X, this gives rise to a function F : I × I → X. Note that

F (s, 0) = γ0(s), F (s, 1) = γ1(s)

by the definition of F . Since γ0 and γ1 have the same endpoints, we also have

F (s, t) = (1 − t)γ0(s) + tγ1(s) = (1 − t)γ0(s) + tγ0(s) = γ0(s)

for s = 0, 1. This means that F : I × I → X is a path homotopy between γ0 and γ1.
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107. According to the definition of concatenation of paths, one has

(f ◦ (g ∗ h))(t) =

{
f(g(2t)) if 0 ≤ t ≤ 1/2
f(h(2t − 1)) if 1/2 ≤ t ≤ 1

}

as well as

((f ◦ g) ∗ (f ◦ h))(t) =

{
f(g(2t)) if 0 ≤ t ≤ 1/2
f(h(2t − 1)) if 1/2 ≤ t ≤ 1

}
.

This proves the equality

f ◦ (g ∗ h) = (f ◦ g) ∗ (f ◦ h) =⇒ f∗(g ∗ h) = f∗(g) ∗ f∗(h)

and it also implies that f∗ is a group homomorphism.

108. Let r : X → A be the retraction and i : A → X be inclusion. Then the composition

A
i−−−→ X

r−−−→ A

is the identity map, so the composition

π1(A, x0)
i∗−−−→ π1(X, x0)

r∗−−−→ π1(A, x0)

is the identity map as well. This actually implies that r∗ is surjective because

[α] ∈ π1(A, x0) =⇒ [α] = r∗(i∗([α])).

109. First, suppose that π1(X, x0) is abelian and let α, β be paths from x0 to x1. Since α ∗ β is
a loop around x0, we must then have

[f ] ∗ [α] ∗ [β] = [f ] ∗ [α ∗ β] = [α ∗ β] ∗ [f ] = [α] ∗ [β] ∗ [f ]

for each loop f around x0. In view of the definition of α̂, we must thus have

α̂([f ]) = [α] ∗ [f ] ∗ [α] ∗ [β] ∗ [β] = [α] ∗ [α] ∗ [β] ∗ [f ] ∗ [β] = β̂([f ])

for each loop f around x0.

• Now, suppose that α̂ = β̂ for all paths α, β from x0 to x1 and let f, h be loops around x0.
Since X is path connected, we can always find a path α from x0 to x1. Then β = h ∗ α is
also a path from x0 to x1, and we have

β = h ∗ α =⇒ β̂ = α̂ ◦ ĥ

by Problem 105. Since α̂ = β̂ is an isomorphism, this actually implies that

α̂([f ]) = β̂([f ]) = α̂( ĥ([f ])) =⇒ [f ] = ĥ([f ]).

In particular, it implies that

[f ] = [h] ∗ [f ] ∗ [h] =⇒ [h] ∗ [f ] = [f ] ∗ [h].
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110. Suppose that U is an open subset of Y and write its inverse image in the form

p−1(U) = X × U =
⋃

x∈X

{x} × U.

Since X has the discrete topology, each of the sets Vx = {x} × U is open in X × Y . Also,
the restriction px : Vx → U is clearly a homeomorphism with inverse qx(y) = (x, y). Since
the projection p is continuous and surjective, it is thus a covering map as well.

111. Suppose X is Hausdorff. Let p : Y → X be a covering map and y1 6= y2 be elements of Y .

• Assuming that p(y1) 6= p(y2), these two elements have disjoint neighbourhoods in X; the
inverse images of these neighbourhoods are then disjoint neighbourhoods of the yi’s in Y .

• Assuming that p(y1) = p(y2), this element has a neighbourhood U which is evenly covered
by p; write its inverse image p−1(U) = ∪Vα as a disjoint union of open sets. Were the yi’s
lying in the same Vα, the restriction pα : Vα → U would fail to be injective, which is not
the case. Thus, there are two disjoint Vα’s containing y1 and y2, as needed.

112. Letting i : S1 → B2 be the inclusion map and r : B2 → S1 a retraction, one has maps

S1 i−−−→ B2 r−−−→ S1

whose composition is the identity. The composition of the induced homomorphisms

π1(S
1, y0)

i∗−−−→ π1(B
2, y0)

r∗−−−→ π1(S
1, y0)

must then be the identity map as well. Since the fundamental group π1(B
2, y0) consists

of one element only, the same is true for the image of r∗. This makes the image of r∗ ◦ i∗
consist of one element only, contrary to the fact that the image is π1(S

1, y0) = Z.

113. Letting g be the inverse of f , we have maps

(X, x0)
f−−−→ (Y, y0)

g−−−→ (X, x0)
f−−−→ (Y, y0)

such that both f ◦ g and g ◦ f are identity maps. Thus, the induced homomorphisms

π1(X, x0)
f∗−−−→ π1(Y, y0)

g∗−−−→ π1(X, x0)
f∗−−−→ π1(Y, y0)

are such that both f∗ ◦ g∗ and g∗ ◦ f∗ are identity maps. This makes f∗ an isomorphism.

114. Let us denote by A the set of all x ∈ X for which p−1(x) has exactly n elements.

• To show that A is open in X, suppose x ∈ A and let U be a neighbourhood of x which is
evenly covered by p. Then p−1(U) can be written as a disjoint union

p−1(U) =
⋃

α

Vα

such that pα : Vα → U is a homeomorphism. Since p−1(x) contains exactly n elements,
the union above contains exactly n sets. In particular, the inverse image of each y ∈ U
contains exactly n elements, and this forces U to lie entirely within A.
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• Using the exact same argument, one can also show that the complement of A is open as
well. Namely, each point x ∈ X − A has a neighbourhood U such that the union

p−1(U) =
⋃

α

Vα

does not contain n sets, and this forces U to lie entirely within X − A.

• Since X is connected, the only subsets of X which are both open and closed in X are the
trivial ones, namely ∅ and X. Moreover, we already know that A is both open and closed
in X. Since A is nonempty by assumption, this actually implies that A = X.

115. Let x0 ∈ X be arbitrary. Since Y is path connected by assumption, the natural map

Φ: π1(X, x0) → p−1(x0)

is surjective. Note that π1(X, x0) contains only one element since X is simply connected.
This implies that p−1(x0) contains only one element as well. In particular, p is bijective,
hence also a homeomorphism.

116. Suppose A ⊂ X is a retract of a contractible space X and let r : X → A be a retraction.
We have to show that any two continuous functions f0, f1 : Y → A are homotopic to one
another. Thus, we need only show that any continuous function f1 : Y → A is homotopic
to the constant map f2(y) = a.

• Let i : A → X denote the inclusion and consider the composition i ◦ f1 : Y → X. Since X
is contractible, we can always find a homotopy F : Y × [0, 1] → X between i ◦ f1 and the
constant map f2(y) = a. Now, define the function G : Y × [0, 1] → A by the formula

G(y, t) = r(F (y, t)).

Then G is a homotopy between f1 and f2 because G is continuous with

G(y, 0) = r(F (y, 0)) = r(f1(y)) = f1(y),

G(y, 1) = r(F (y, 1)) = r(a) = a = f2(y).

117a. The unit disc B2 with the origin removed has S1 as a strong deformation retract. Thus,
its fundamental group is isomorphic to π1(S

1) = Z.

117b. The complement of the z-axis in R
3 has S1 × {0} as a strong deformation retract. Since

this space is homeomorphic to S1, its fundamental group is then π1(S
1) = Z.

117c. The complement of the unit ball in R
3 has S2 as a strong deformation retract, so its

fundamental group is π1(S
2) = 0.

117d. The unit sphere S2 with two points removed is homeomorphic to the punctured plane.
Since the latter space has S1 as a strong deformation retract, its fundamental group is Z.
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118. Let r : B2 → X be the retraction and i : X → B2 be inclusion. Then the composition

B2 r−−−→ X
f−−−→ X

i−−−→ B2

must have a fixed point by Brouwer’s theorem. Let x0 ∈ B2 be such, and note that

x0 = i(f(r(x0))) =⇒ x0 = f(r(x0)) ∈ X.

Since the retraction r satisfies r(x) = x for all x ∈ X, this actually implies that

x0 = f(r(x0)) = f(x0).

119. Consider the functions

f(x, y) = (x2 + x) cos t − y2 sin t, g(x, y) = (x2 − 1) sin t + y3 cos t

and

h(x, y) =

(
f(x, y)

5
,

g(x, y)

5

)
.

Then the given system of equations has a solution if and only if h has a fixed point. In
view of Brouwer’s theorem, it thus suffices to show that h maps B2 to itself.

• Suppose now that (x, y) is an arbitrary point in B2. Then

x2 + y2 ≤ 1 =⇒ x2 ≤ 1, y2 ≤ 1

and this implies
|f(x, y)| ≤ |x2 cos t| + |x cos t| + |y2 sin t| ≤ 3

as well as
|g(x, y)| ≤ |x2 sin t| + | sin t| + |y3 cos t| ≤ 3.

In particular, it implies

f(x, y)2

25
+

g(x, y)2

25
≤ 9

25
+

9

25
≤ 1 =⇒ h(x, y) ∈ B2.

120. Since the given loop has γ̃0(t) = 4πit as its lifting, its winding number is

w(γ0) =
γ̃0(1) − γ̃0(0)

2πi
=

4πi − 0

2πi
= 2.

121. The given loop is homotopic to that of the previous exercise via the homotopy

F (s, t) = (1 + t) e4πis.

Since homotopic loops have the same winding number, we deduce that w(γ1) = 2 as well.
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122. We already proved this in class.

123. Let X1 and X2 denote the two spheres and let p ∈ X1 ∩ X2 denote the point in common.
Pick any point q1 ∈ X1 − {p} and any point q2 ∈ X2 − {p}. Then

X = (X − {q1}) ∪ (X − {q2})

is the union of two simply connected sets whose intersection is path connected. In view of
van Kampen’s theorem, this also implies that X is simply connected.

124. The function f(x) = −x is continuous on S1. However, it has no fixed point because

f(x) = x =⇒ −x = x =⇒ x = 0 =⇒ x /∈ S1.

125. Define a function f : X → [0,∞) by the formula f(x, y) = x2 + y2. Since f attains the
same value on equivalent points, it gives rise to a continuous function f : X → [0,∞). To
see that f is actually a homeomorphism, consider the composition

[0,∞)
g−−−→ X

p−−−→ X,

where g is defined by g(r) = (
√

r, 0) and p is the map which sends each element of X to
its equivalence class. Then p ◦ g is the inverse of f because

f(p(g(r))) = f([g(r)]) = f(g(r)) = r.

Moreover, p ◦ g is the composition of continuous functions, hence also continuous.

126. Suppose f : X → Y and g : Y → Z are quotient maps. Then each of f, g is surjective, so
their composition g ◦ f is surjective as well. Moreover, we have

U is open in Z ⇐⇒ g−1(U) is open in Y ⇐⇒ f−1(g−1(U)) is open in X.

Since this implies that

U is open in Z ⇐⇒ (g ◦ f)−1(U) is open in X,

we may conclude that the composition g ◦ f is a quotient map itself.

127. The quotient space is homeomorphic to S2. An easy way to visualize the identification is
by thinking of soap bubbles. If you take a circular layer of soap and blow into it, then
the interior of the circle will move forward and its boundary will eventually collapse into
a single point; this also gives rise to a bubble.

128. Suppose we can find a continuous function f : X → S2 which is constant throughout the
boundary. Then f would give rise to a continuous function f : X → S2 from a compact
space to a Hausdorff space, and this would actually be a homeomorphism by Problem 43.
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• To find a continuous function f : B2 → S2 that is constant throughout the boundary, we
express the domain B2 in terms of polar coordinates

B2 = {(r cos θ, r sin θ) : 0 ≤ θ < 2π, 0 ≤ r ≤ 1}

and the image S2 in terms of spherical coordinates

S2 = {(cos θ sin φ, sin θ sin φ, cos φ) : 0 ≤ θ < 2π, 0 ≤ φ ≤ π}.

In view of the last two equations, it is now easy to see that the function

f(r cos θ, r sin θ) =
(
cos θ sin(πr), sin θ sin(πr), cos(πr)

)

has the desired properties. Namely, this function maps the boundary r = 1 to the point

f(cos θ, sin θ) = (cos θ sin π, sin θ sin π, cos π) = (0, 0,−1).

129. All positive numbers are equivalent to 1 and all negative numbers are equivalent to −1.
The set of equivalence classes is thus easily found to be

X = {[0], [1], [−1]}.

Let p : X → X be the map that sends each real number x to its equivalence class [x].
By the definition of the quotient topology, the sets which are open in X are those whose
inverse images are open in X = R. In particular, the only open subsets of X are

∅, {[1]}, {[−1]}, {[1], [−1]}, X.

For instance, the inverse image of [1] is (0,∞), and so on. Since [0] and [1] fail to have
disjoint neighbourhoods by above, we deduce that X is not Hausdorff.

130. Suppose that r : X → A is a retraction. Given any subset U ⊂ A, we then have

r−1(U) ∩ A = {x ∈ A : r(x) ∈ U} = {x ∈ A : x ∈ U} = U.

In particular, U is open in A if and only if r−1(U) is open in X.

131. Consider the function f : X → [−1, 1] defined by f(x, y, z) = z. Since f attains the same
value on equivalent points, it gives rise to a continuous function f : X → [−1, 1]. Noting
that X is compact and [−1, 1] is Hausdorff, we may then invoke Problem 43 to conclude
that f is actually a homeomorphism.

132. We use the notation of Figure 1; see the last page. The 0-boundaries are generated by

∂α = ∂γ = x − y, ∂β = ∂δ = 0

and this implies B0 = Z[x − y]. The 1-boundaries are generated by

∂U = γ − β − α, ∂L = δ + α − γ

and so B1 = Z
2[γ − β − α, δ + α − γ]. On the other hand, Bi = {0} for each i ≥ 2.
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• Next, we turn to the cycles. It is clear that Z0 = C0 = Z
2[x, y] because every 0-chain has

zero boundary by definition. To find Z1, we note that

k · ∂α + l · ∂β + m · ∂γ + n · ∂δ = 0 ⇐⇒ k(x − y) + m(x − y) = 0

⇐⇒ m = −k.

This gives three degrees of freedom for the parameters k, l,m, n and it also implies

Z1 = {kα + lβ − kγ + nδ : k, l, n ∈ Z} = Z
3[α − γ, β, δ].

To find Z2, we note that

m · ∂U + n · ∂L = 0 ⇐⇒ m(γ − β − α) + n(δ + α − γ) = 0

⇐⇒ m = n = 0.

This makes Z2 trivial, so we actually have Zi = {0} for each i ≥ 2.

• Finally, we turn to the homology groups. The first two of those are given by

H0 =
Z

2[x, y]

Z[x − y]
=

Z
2[x − y, y]

Z[x − y]
= Z[y],

H1 =
Z

3[α − γ, β, δ]

Z2[γ − β − α, δ + α − γ]
=

Z
2[γ − α, β]

Z[γ − α − β]
= Z[β].

Moreover, all higher homology groups are trivial by above.

133. We use the notation of Figure 1; see the last page. The 0-boundaries are generated by

∂α = y − x, ∂β = z − y, ∂γ = z − x = ∂α + ∂β

and this implies B0 = Z
2[y − x, z − y]. The 1-boundaries are generated by

∂A = α + β − γ

and so B1 = Z[α + β − γ]. On the other hand, Bi = {0} for each i ≥ 2.

• Next, we turn to the cycles. It is clear that Z0 = C0 = Z
3[x, y, z] because every 0-chain

has zero boundary by definition. To find Z1, we note that

k · ∂α + l · ∂β + m · ∂γ = 0 ⇐⇒ k(y − x) + l(z − y) + m(z − x) = 0

⇐⇒ k + m = k − l = l + m = 0

⇐⇒ l = k, m = −k.

This gives one degree of freedom for the parameters k, l,m and it also implies

Z1 = {kα + kβ − kγ : k ∈ Z} = Z[α + β − γ].

On the other hand, it is easy to see that Zi = {0} for each i ≥ 2.
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• Finally, we turn to the homology groups. The first two of those are given by

H0 =
Z

3[x, y, z]

Z2[y − x, z − y]
=

Z
2[x, y]

Z[y − x]
= Z[x],

H1 =
Z[α + β − γ]

Z[α + β − γ]
= {0}.

In fact, all higher homology groups are trivial as well.

134. We use the notation of Figure 1; see the last page. The 0-boundaries are generated by

∂α = y − x, ∂β = x − y, ∂γ = 0, ∂δ = y − x

and this implies B0 = Z[y − x]. The 1-boundaries are generated by

∂U = γ − β − α, ∂L = δ − α − γ

and so B1 = Z
2[γ − β − α, δ − α − γ]. On the other hand, Bi = {0} for each i ≥ 2.

• Next, we turn to the cycles. It is clear that Z0 = C0 = Z
2[x, y] because every 0-chain has

zero boundary by definition. To find Z1, we note that

k · ∂α + l · ∂β + m · ∂γ + n · ∂δ = 0 ⇐⇒ k(y − x) + l(x − y) + n(y − x) = 0

⇐⇒ n = l − k.

This gives three degrees of freedom for the parameters k, l,m, n and it also implies

Z1 = {kα + lβ + mγ + (l − k)δ : k, l,m ∈ Z} = Z
3[α − δ, β + δ, γ].

On the other hand, it is easy to see that Zi = {0} for each i ≥ 2.

• Finally, we turn to the homology groups. The first two of those are given by

H0 =
Z

2[x, y]

Z[y − x]
=

Z
2[x, y − x]

Z[y − x]
= Z[x],

H1 =
Z

3[α − δ, β + δ, γ]

Z2[γ − β − α, δ − α − γ]
=

Z
2[α − δ, γ]

Z[δ − α − γ]
= Z[γ].

Moreover, all higher homology groups are trivial by above.

135. We use the notation of Figure 2; see the last page. The 0-boundaries are generated by

∂α = ∂β = ∂γ = 0 =⇒ B0 = {0}.

The 1-boundaries are generated by

∂U = γ − β − α, ∂L = α − γ + β = −∂U

and so B1 = Z[γ − β − α]. On the other hand, Bi = {0} for each i ≥ 2.
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• Next, we turn to the cycles. We note that Z0 = C0 = Z[x] because every 0-chain has zero
boundary by definition, while Z1 = C1 = Z

3[α, β, γ] because every edge has zero boundary
by above. To find Z2, we note that

m · ∂U + n · ∂L = 0 ⇐⇒ m(γ − β − α) + n(α − γ + β) = 0

⇐⇒ n = m.

This gives one degree of freedom for the parameters m,n and it also implies

Z2 = {mU + mL : m ∈ Z} = Z[U + L].

On the other hand, it is clear that Zi = {0} for each i ≥ 3.

• Finally, we turn to the homology groups. The first three of those are given by

H0 =
Z[x]

{0} = Z[x],

H1 =
Z

3[α, β, γ]

Z[γ − β − α]
= Z

2[α, β],

H2 =
Z[U + L]

{0} = Z[U + L].

Moreover, all higher homology groups are trivial by above.

136. We use the notation of Figure 2; see the last page. The 0-boundaries are generated by

∂α = x − x = 0, ∂β = x − x = 0

and this implies that B0 = {0}. In particular, it implies that Bi = {0} for all i.

• When it comes to the cycles, it is easy to see that

Z0 = C0 = Z[x], Z1 = C1 = Z
2[α, β], Z2 = Z3 = · · · = {0}

because both the vertex x and the edges α, β have zero boundary by above.

• Finally, we turn to the homology groups. The first two of those are given by

H0 =
Z[x]

{0} = Z[x], H1 =
Z

2[α, β]

{0} = Z
2[α, β]

and all higher homology groups are trivial.

137. We use the notation of Figure 2; see the last page. The 0-boundaries are generated by

∂α = ∂β = ∂γ = 0

and this implies that B0 = {0}. The 1-boundaries are generated by

∂U = γ − β − α, ∂L = β − α − γ

and so B1 = Z
2[γ − β − α, β − α − γ]. On the other hand, Bi = {0} for each i ≥ 2.
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• Next, we turn to the cycles. We note that Z0 = C0 = Z[x] because every 0-chain has zero
boundary by definition, while Z1 = C1 = Z

3[α, β, γ] because every edge has zero boundary
by above. To find Z2, we note that

m · ∂U + n · ∂L = 0 ⇐⇒ m(γ − β − α) + n(β − α − γ) = 0

⇐⇒ m + n = m − n = 0

⇐⇒ m = n = 0.

This also implies that Zi = {0} for any i ≥ 2 whatsoever.

• Finally, we turn to the homology groups. The first two of those are given by

H0 =
Z[x]

{0} = Z[x],

H1 =
Z

3[α, β, γ]

Z2[γ − β − α, β − α − γ]
=

Z
3[α, β, γ − β − α]

Z2[γ − β − α, 2α]
=

Z[α]

Z[2α]
× Z[β].

Moreover, all higher homology groups are trivial by above.

138. We use the notation of Figure 3; see the last page. The 0-boundaries are generated by

∂α = x − y, ∂β = x − y, ∂γ = 0

and this implies that B0 = Z[x − y]. The 1-boundaries are generated by

∂U = γ + β − α, ∂L = β − α − γ

and so B1 = Z
2[γ + β − α, β − α − γ]. On the other hand, Bi = {0} for each i ≥ 2.

• Next, we turn to the cycles. We note that Z0 = C0 = Z
2[x, y] because every 0-chain has

zero boundary by definition. To find Z1, we note that

k · ∂α + l · ∂β + m · ∂γ = 0 ⇐⇒ k(x − y) + l(x − y) = 0

⇐⇒ l = −k.

This gives two degrees of freedom for the parameters k, l,m and it also implies

Z1 = {kα − kβ + mγ : k,m ∈ Z} = Z
2[α − β, γ].

To find Z2, we similarly note that

m · ∂U + n · ∂L = 0 ⇐⇒ m(γ + β − α) + n(β − α − γ) = 0

⇐⇒ m + n = m − n = 0

⇐⇒ m = n = 0.

This also implies that Zi = {0} for any i ≥ 2 whatsoever.
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• Finally, we turn to the homology groups. The first two of those are given by

H0 =
Z

2[x, y]

Z[x − y]
=

Z
2[x − y, y]

Z[x − y]
= Z[y],

H1 =
Z

2[α − β, γ]

Z2[γ + β − α, β − α − γ]
=

Z
2[α − β, γ + β − α]

Z2[γ + β − α, 2β − 2α]
=

Z[α − β]

Z[2α − 2β]
.

Moreover, all higher homology groups are trivial by above.

139. We use the notation of Figure 3; see the last page. Since ∂x = ∂α = 0, we have Bi = {0}
for any i ≥ 0 whatsoever. When it comes to the cycles, it is easy to see that

Z0 = C0 = Z[x], Z1 = C1 = Z[α], Z2 = Z3 = · · · = {0}

because both the vertex x and the edge α have zero boundary by above. In particular,

H0 =
Z[x]

{0} = Z[x], H1 =
Z[α]

{0} = Z[α]

and all higher homology groups are trivial.

140. One way to compute the Euler characteristic of the torus T is to note that

H0(T ) = Z, H1(T ) = Z
2, H2(T ) = Z, H3(T ) = H4(T ) = · · · = {0}

by Problem 135, whence χ(T ) = 1 − 2 + 1 = 0. Alternatively, one can note that

C0(T ) = Z, C1(T ) = Z
3, C2(T ) = Z

2, C3(T ) = C4(T ) = · · · = {0}

and then use the Euler-Poincaré theorem to conclude that χ(T ) = 1 − 3 + 2 = 0.

15



α α

δ

β

γ

y y

x x

U

L

ª

ª

α

βγ

x

z

y

A

ª

α α

δ

β

γ

x y

y x

U

L

ª

ª

Figure 1: The cylinder; the unit disc B2; and the Möbius strip.
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Figure 2: The torus; the figure eight; and the Klein bottle.
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Figure 3: The projective space RP 2 and the unit circle S1.
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