Maths 212: Homework Solutions

95. Letting x = (x1,22,...) and y = (y1, Y2, - . .), we may use the triangle inequality to get

|z +yllh = Z‘xz+yz| a4y

< Z i - s+ P+ Z il - i + P

Next, we apply Holder’s inequality. Since ¢ = p/(p—1) is such that 1/p+1/g = 1, we find

1/p 1/q
D | o + oyl < (Z\M”) (Z\xiwi!(pl)q)

= [lallp - llz + gl

because (p — 1)g = p by above. Note that a similar argument applies to give

D lwil -l wlP < lyllp - Il + /e

(2

as well. Once we now combine the last three equations, we arrive at

o+ 112 < (lally + 1ylly) -l + w2/,
In the case that ||z + y||, is nonzero, this implies the desired inequality
e+ yllp = lle +yllo? < lall, + [yl
When ||z + y||, is zero, on the other hand, the desired inequality holds trivially.

96. Suppose that x,, = (T,1, Tpa, .. .) is a Cauchy sequence in ¢? and let ¢ > 0. Then

o0

|$mk - l’nk|p < Z |xmk - xnk|p = ||$m - In”i <e?
k=1

for large enough m,n. This means that z,; is a Cauchy sequence in R for each k, so
converges for each k. Suppose x,, — a for each k and set a = (aq, as,...). Since

o0

Z | Tk — Top|? < P

k=1
for large enough m,n by above, we may let n — oo to find that
oo
Z Tt — ai|P < = |z, —all, <e
k=1

for large enough m. This shows that our sequence x,, converges to a. Moreover,
lally < lla = zmllp + [|zmllp, < &+ [[zml]

for large enough m by above, so we also have a € (P, as needed.



97. Linearity is rather easy to establish. To see that T is also bounded, we note that

Yoaiai<alll ) xf = |ITall: < llallollz]|2-
i=1 i=1
This implies the inequality ||T|| < ||a||s- Let us now consider the sequence
yr = (0,...,0,1,0,...)
whose coordinates are all zero, except for the kth one, which is equal to 1. Noting that
Tye = (0,...,0,at,0,...) = |[Tyxll> = |ar| = |ar| - [|yxl]2,
we find that ||T'|| > |ax| for each k. Taking the supremum of both sides, we thus find

1Tl = suplax] = llalle = [IT]} = llaflo-

98. Pick an element a = (ay,as,...) in ¢” and consider its truncated version
T, = (ay,as,...,a,,0,0,...) € l.
Since the series ) |ax|? converges by assumption, it is clear that

oo
|20 — allh = Z lag|? — 0 as n — 0o.

k=n-+1
This shows that the sequence x,, of points in ¢y converges to a, namely that a € Cl .

99. Suppose that z, = (T,1, Tne, . ..) is a Cauchy sequence in Cy and let £ > 0. Then

|xmk - xnk| S sup |xmk - JJnkl - doo(xma xn) <e€
k

for large enough m,n. This shows that z,;, is a Cauchy sequence in R for each k, so x,;
converges for each k. Suppose z,; — a, for each k and set a = (ay, as,...). Since

Tk — Tai| < sup Tk — Toi| <€
for large enough m,n by above, we may let n — oo to find that
|Tme —ax] <& = doo(Tm,a) = s%p | Tmr — ag| < e

for large enough m. This shows that our sequence z,, converges to a. Moreover,
|ak‘ S |ak - xmk‘ + ‘xmk‘ S doo(a> wm) + ’xmk’

Letting k£ — oo and then m — oo, one now finds that a € Cj, as needed.



100a. Using the ¢*-norm for £y, one easily finds that
Ta| <Y ol = [lo]i = [IT]] < 1.
n=1

In particular, T is a bounded linear transformation, hence also continuous.

100b. Define a sequence z,, of elements of ¢y by setting
21 =(1,0,0,...),  x2=(1,1,0,0,...),  x3=(1,1,1,0,0,...),
and so on. Then we have T'z,, = n and also ||z,||s = /n for each n, hence

|Tx,| B

lzalla

vn

fails to be bounded. In particular, 7" fails to be continuous as well.

101. Linearity is rather easy to establish. To see that A is also bounded, we note that
it al Sncllille = Aol < lofle = (A< 1.

Since the element y = (1,1, 1,...) is such that

1+1 1+1+1
Ay_(17+ + 1+

) =(1,1,1,..) =
27 3 ’ ) (777 ) y7

we also have
1.

A A
Al — sup 1421 Nl _
T ]

102. Using Holder’s inequality, one easily finds that

[e.9]
T < laswi] < llallg - [l

i=1
for each & = (21,2, ...) in 7. This implies the inequality ||T'|| < ||a||,.
e Next, we consider the sequence y = (41, ¥z, . . .) which is obtained by setting
Yi = |ai’q/p - sIgn a;

for each 7. To see that y is an element of P, we need only note that

o0 o0
lyllp =D lal? = > lail* = [[all
i=1 1=1



103.

104.

105.

106.

is finite by assumption. Using the fact that

1 1
-+ —-=1 — g+1:q7
P qg p

one now easily finds

oo oo o
Ty = la;|"" a;signa; = |a;| " = "Ja;|” = [|al|2.
i=1 i=1 i=1

Combining our computations above, we thus arrive at

Ty = llally = NlallZ"** = llyll, - llall, = 171 = [lally-

Suppose X is contractible and let a,b € X be arbitrary. Since X is contractible, one can
always find a homotopy F': X x I — X between the identity function and the constant
map f(z) = b. This also gives rise to a path v(t) = F(a,t) between a and b, since

7(0) = F(a,0) = a, v(1) = F(a,1) =b.

Let F': X x I — Y be a homotopy between the f;’s and G: Y x I — Z be a homotopy
between the g;’s. Then the function H(z,t) = G(F(z,t),t) is continuous with

H(CL’,O) = G(F(.Z‘,O),O) - G(fO(I)70) = gO(fO(:E)) = (90 © fO)(x)v

H(z,1) = G(F(z,1),1) = G(f1(2),1) = g1(f1(2)) = (91 © f1)(x).
In other words, H: X x I — Z is a homotopy between gq o fo and g; o fi.

Since 7 = a % 3 is a path from x to z, the function 7: (X, z) — m (X, z) is defined by
(ST = B = [f] = ]
for each loop f around x. To simplify this expression, we note that
o] =Y+ =[ed*[B]+7] = [@=1[6xH = I[B[]=Hl

Once we now combine the last two equations, we find that

(1) = [8] = [@) = [f] * [a]  [8] = [B] = &([]) = [8] = B@(L))-
Suppose that 7g,71: I — X are two paths having the same endpoints and set
F(s,t) = (1 —t)y0(s) + ty1(s) for all s,t € I.
Due to the convexity of X, this gives rise to a function F': I x [ — X. Note that
F(s,0) =(s),  F(s,1) = n(s)

by the definition of F'. Since 7, and 7; have the same endpoints, we also have

F(s;t) = (1 =1t)y0(s) +tn(s) = (1 = t)v0(s) +t70(s) = 0(s)

for s = 0,1. This means that F': I x I — X is a path homotopy between 7, and ;.

4



107. According to the definition of concatenation of paths, one has

Flg(2t if 0<t<1/2
(folgxh)(t) = { fE}qz(zt))— 1) if 1/2<¢t §/1 }

as well as

flg(2t)) if 0<t<1/2
((fog)*(foh))(t):{ f(igz(Qt—l)) if 1/2<t<1 }

This proves the equality
folgxh)=(fog)«(foh) = flgxh)=fg)*fu(h)
and it also implies that f, is a group homomorphism.

108. Let r: X — A be the retraction and i: A — X be inclusion. Then the composition

A X .4

is the identity map, so the composition

7T1(A7130) e 7T1(X, o) s 7T1(A,l‘o)
is the identity map as well. This actually implies that r, is surjective because

o] € m(A,z0) = o] = r.(in([a])).

109. First, suppose that m (X, z0) is abelian and let o, 3 be paths from zq to x1. Since o * 3 is
a loop around xy, we must then have

[f1 % [a] * [B] = [f] * [0+ B] = [av# B]  [f] = [a] + [B]  [f]

for each loop f around . In view of the definition of &, we must thus have

a([f]) = [@] * [f] * [a] = [B] % [8] = [a] * [a] * [B] * [£] * [8] = B(LS])
for each loop f around xzg.

e Now, suppose that a = B\ for all paths «, § from zy to x1 and let f, h be loops around z.
Since X is path connected, we can always find a path « from xy to 1. Then § = h % « is
also a path from zq to x1, and we have

~

B=h*a = B=aoh
by Problem 105. Since a@ = B is an isomorphism, this actually implies that

a(lf) =B8N =ah(f) = [f]=h{)



110.

111.

112.

113.

114.

Suppose that U is an open subset of Y and write its inverse image in the form
p ' (U)=XxU=|J{z} xU.
reX

Since X has the discrete topology, each of the sets V, = {x} x U is open in X x Y. Also,
the restriction p,: V, — U is clearly a homeomorphism with inverse ¢,(y) = (x,y). Since
the projection p is continuous and surjective, it is thus a covering map as well.

Suppose X is Hausdorff. Let p: Y — X be a covering map and y; # y2 be elements of Y.

Assuming that p(y1) # p(y2), these two elements have disjoint neighbourhoods in X; the
inverse images of these neighbourhoods are then disjoint neighbourhoods of the y;’s in Y.

Assuming that p(y;) = p(y2), this element has a neighbourhood U which is evenly covered
by p; write its inverse image p~*(U) = UV, as a disjoint union of open sets. Were the y;’s
lying in the same V,, the restriction p,: V, — U would fail to be injective, which is not
the case. Thus, there are two disjoint V,’s containing y; and y,, as needed.

Letting i: S* — B2 be the inclusion map and r: B? — S* a retraction, one has maps

gl i B2 r Sl

whose composition is the identity. The composition of the induced homomorphisms

7T1<Sl7y0) Z—*> 7T1(B27y0) L> 7T1<Slay0)

must then be the identity map as well. Since the fundamental group (B2, 1) consists
of one element only, the same is true for the image of r,. This makes the image of r, o,
consist of one element only, contrary to the fact that the image is w1 (S, yo) = Z.

Letting g be the inverse of f, we have maps
f /
(X, 20) —— (Vyp0) —— (X, ) —— (Y;%0)
such that both f og and g o f are identity maps. Thus, the induced homomorphisms
m(X, @) —I m(Y,y) —2 m(X,20) —L— m(Y,p0)
are such that both f, o g, and g, o f, are identity maps. This makes f, an isomorphism.
Let us denote by A the set of all z € X for which p~!(z) has exactly n elements.

To show that A is open in X, suppose x € A and let U be a neighbourhood of x which is
evenly covered by p. Then p~'(U) can be written as a disjoint union

pil(U) = U Va

such that p,: V,, — U is a homeomorphism. Since p~!(z) contains exactly n elements,
the union above contains exactly n sets. In particular, the inverse image of each y € U
contains exactly n elements, and this forces U to lie entirely within A.
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e Using the exact same argument, one can also show that the complement of A is open as

115.

116.

117a.

117b.

117c.

117d.

well. Namely, each point © € X — A has a neighbourhood U such that the union
pil(U) = U Va

does not contain n sets, and this forces U to lie entirely within X — A.

Since X is connected, the only subsets of X which are both open and closed in X are the
trivial ones, namely @ and X. Moreover, we already know that A is both open and closed
in X. Since A is nonempty by assumption, this actually implies that A = X.

Let o € X be arbitrary. Since Y is path connected by assumption, the natural map
O m (X, m0) — p(x0)

is surjective. Note that m (X, z) contains only one element since X is simply connected.
This implies that p~'(zy) contains only one element as well. In particular, p is bijective,
hence also a homeomorphism.

Suppose A C X is a retract of a contractible space X and let r: X — A be a retraction.
We have to show that any two continuous functions fy, f1: ¥ — A are homotopic to one
another. Thus, we need only show that any continuous function f;: Y — A is homotopic
to the constant map fo(y) = a.

Let i: A — X denote the inclusion and consider the composition io f;: Y — X. Since X
is contractible, we can always find a homotopy F': Y x [0,1] — X between i o f; and the
constant map f2(y) = a. Now, define the function G: Y x [0,1] — A by the formula

Gy, 1) = r(F(y,1)).

Then G is a homotopy between f; and fy because G is continuous with

G(y,0) =r(F(y,0)) = r(fi(y)) = fr(y),
G(y,1) =r(F(y,1)) =7r(a) = a= fa(y).

The unit disc B? with the origin removed has S! as a strong deformation retract. Thus,
its fundamental group is isomorphic to m (S') = Z.

The complement of the z-axis in R has S' x {0} as a strong deformation retract. Since
this space is homeomorphic to S!, its fundamental group is then m(S') = Z.

The complement of the unit ball in R? has S? as a strong deformation retract, so its
fundamental group is 7 (S?) = 0.

The unit sphere S? with two points removed is homeomorphic to the punctured plane.
Since the latter space has S! as a strong deformation retract, its fundamental group is Z.

7



118. Let 7: B*> — X be the retraction and i: X — B? be inclusion. Then the composition

B ", x I, x 1, p

must have a fixed point by Brouwer’s theorem. Let zqg € B? be such, and note that

To = i(f(r())) = 0= f(r(z)) € X.

Since the retraction r satisfies r(z) = x for all z € X, this actually implies that
zo = f(r(zo)) = f (o).
119. Consider the functions
f(z,y) = (2* + 2) cost — y*sint, g(x,y) = (% — 1)sint + y® cost

and

W, y) = (f($5, v g(ﬁ; y)) .

Then the given system of equations has a solution if and only if A has a fixed point. In
view of Brouwer’s theorem, it thus suffices to show that A maps B? to itself.

e Suppose now that (x,y) is an arbitrary point in B2 Then
x2+y2§1 = x2§1, y2§1
and this implies
|f(z,y)| < |2° cost| + | cost| + [y*sint| < 3

as well as
lg(z,y)| < |2®sint| + |sint| + |y* cost| < 3.

In particular, it implies

f(fc,y)QJrg(rv,y)2 <9
% 95  — 125 25—

120. Since the given loop has 7 (t) = 4mit as its lifting, its winding number is

. %(1) - %(0) - dmi — 0
w(%) N 271 o omi

=2.

121. The given loop is homotopic to that of the previous exercise via the homotopy
F(s,t) = (1 +1t)e'™.

Since homotopic loops have the same winding number, we deduce that w(y;) = 2 as well.



122.
123.

124.

125.

126.

127.

128.

We already proved this in class.

Let X; and X5 denote the two spheres and let p € X; N X5 denote the point in common.
Pick any point ¢; € X; — {p} and any point ¢» € X5 — {p}. Then

X=X—-—{a})UX—{e¢})

is the union of two simply connected sets whose intersection is path connected. In view of
van Kampen’s theorem, this also implies that X is simply connected.

The function f(z) = —z is continuous on S'. However, it has no fixed point because
f@)=2 = —a2=1 = =0 = ¢S
Define a function f: X — [0,00) by the formula f(z,y) = 2? + y*. Since f attains the

same value on equivalent points, it gives rise to a continuous function f: X —1[0,00). To
see that f is actually a homeomorphism, consider the composition

[0,00) 24— X 2> X,

where g is defined by g(r) = (y/7,0) and p is the map which sends each element of X to
its equivalence class. Then p o ¢ is the inverse of f because

Twlg(r)) = F(lg(r)]) = fg(r)) =r.

Moreover, p o g is the composition of continuous functions, hence also continuous.

Suppose f: X — Y and ¢g: Y — Z are quotient maps. Then each of f, g is surjective, so
their composition g o f is surjective as well. Moreover, we have

Uisopenin Z <= ¢ '(U)isopeninY <= f (g ' (U)) is open in X.
Since this implies that
Uis openin Z <= (go f) ' (U) is open in X,
we may conclude that the composition g o f is a quotient map itself.

The quotient space is homeomorphic to S?. An easy way to visualize the identification is
by thinking of soap bubbles. If you take a circular layer of soap and blow into it, then
the interior of the circle will move forward and its boundary will eventually collapse into
a single point; this also gives rise to a bubble.

Suppose we can find a continuous function f: X — S? which is constant throughout the
boundary. Then f would give rise to a continuous function f: X — S? from a compact
space to a Hausdorff space, and this would actually be a homeomorphism by Problem 43.



e To find a continuous function f: B* — S? that is constant throughout the boundary, we

129.

130.

131.

132.

express the domain B? in terms of polar coordinates
B? = {(rcosf,rsinf) : 0 <0 <27, 0<r<1}
and the image S? in terms of spherical coordinates
S? = {(cosfsin ¢,sinfsinp,cos¢) : 0 <O <2r, 0<¢ <7}
In view of the last two equations, it is now easy to see that the function
f(rcos,rsinf) = (cosfsin(mr),sinsin(wr), cos(rr))
has the desired properties. Namely, this function maps the boundary r = 1 to the point

f(cos@,sinf) = (cos@sinm,sinfsinm,cosm) = (0,0, —1).

All positive numbers are equivalent to 1 and all negative numbers are equivalent to —1.
The set of equivalence classes is thus easily found to be

X = {[o], (1], [-1]}-

Let p: X — X be the map that sends each real number z to its equivalence class [z].
By the definition of the quotient topology, the sets which are open in X are those whose
inverse images are open in X = R. In particular, the only open subsets of X are

o, AWy AFLL O ARLELE X

For instance, the inverse image of [1] is (0,00), and so on. Since [0] and [1] fail to have
disjoint neighbourhoods by above, we deduce that X is not Hausdorff.

Suppose that 7: X — A is a retraction. Given any subset U C A, we then have
rU)NA={z€A r(x)eUt={vcA:2cU}=U.
In particular, U is open in A if and only if r~1(U) is open in X.

Consider the function f: X — [—1,1] defined by f(z,y,2) = z. Since f attains the same
value on equivalent points, it gives rise to a continuous function f: X — [—1,1]. Noting
that X is compact and [—1,1] is Hausdorff, we may then invoke Problem 43 to conclude
that f is actually a homeomorphism.

We use the notation of Figure 1; see the last page. The 0-boundaries are generated by
Ja=0v=x—1y, 0B =00=0
and this implies By = Z[z — y|. The 1-boundaries are generated by
oU =~ —0—aq, OL=0+a—7
and so By = Z*[y —  — a,0 + a — 7]. On the other hand, B; = {0} for each i > 2.

10



e Next, we turn to the cycles. It is clear that Zy = Cy = Z?[z,y| because every 0-chain has

133.

zero boundary by definition. To find Z;, we note that

k-Oa+1-08+m-0y+n-06=0 < k(zx—y)+mz—1y) =0
— m = —k.

This gives three degrees of freedom for the parameters k, [, m,n and it also implies
7y ={ka+13—ky+né : kl,nc€Z} =7a—1,30.
To find Z5, we note that

m-0U+n-0L=0 < m(y—pF—a)+nd+a—v)=0
< m=n=0.

This makes Z, trivial, so we actually have Z; = {0} for each i > 2.

Finally, we turn to the homology groups. The first two of those are given by

Pyl ZPlr—y,yl
Ty 2y 20

B ZP[oc — 7y, 3, 9]  Zly-a,f8
= —f-adta— Zh-a-g

Moreover, all higher homology groups are trivial by above.

Hy

We use the notation of Figure 1; see the last page. The 0-boundaries are generated by
oa =y —ux, 0B =z—y, Oy=z—x=0a+ 9003
and this implies By = Z*[y — x, 2 — y|. The 1-boundaries are generated by
JA=a+p—v
and so By = Z[a+ [ — v]. On the other hand, B; = {0} for each i > 2.

Next, we turn to the cycles. It is clear that Z, = Cy = Z3[x, vy, z| because every 0-chain
has zero boundary by definition. To find Z;, we note that

k-0a+1-08+m-0y=0 < k(y—x)+l(z—y)+m(z—2z)=0
= k+m=k—-1l=14+m=0
<~ =k, m=—k.

This gives one degree of freedom for the parameters k, [, m and it also implies
Zy=A{ka+kB—ky : k€eZ}=Zla+ -7

On the other hand, it is easy to see that Z; = {0} for each i > 2.

11



e Finally, we turn to the homology groups. The first two of those are given by

_ Zg[xayaz] _ ZQ[Z.?y] o T
HO— Zz[y—x,Z—y] - Z[y—l'] _Z[ ]7
_Zo+B -] _
= Zar )~

In fact, all higher homology groups are trivial as well.
134. We use the notation of Figure 1; see the last page. The 0-boundaries are generated by
oa =y —ux, o =z —v, oy =0, d=y—=x
and this implies By = Z[y — z]. The 1-boundaries are generated by
ou=~—-0-aq, OL=6—a—v
and so By = Z*[y —  — a,0 — a — 7). On the other hand, B; = {0} for each i > 2.

e Next, we turn to the cycles. It is clear that Zy = Cy = Z?[z,y| because every 0-chain has
zero boundary by definition. To find Z;, we note that
k-Oa+1-08+m-0y+n-00=0 < k(y—z)+l(z—y)+nly—2)=0
= n=I1—-k

This gives three degrees of freedom for the parameters k, [, m,n and it also implies
Zi={ka+13+my+(—k) : k,l,mecZ}=7Za—23508+6n7)].
On the other hand, it is easy to see that Z; = {0} for each i > 2.

e Finally, we turn to the homology groups. The first two of those are given by

_ ZPlzyy]  ZPlzy—a] ;
M=y o~ 2y
 ZPla=6,8+6]  ZPla—é,n]
= —F—ad-a-7 Zb-a-n 0

Moreover, all higher homology groups are trivial by above.
135. We use the notation of Figure 2; see the last page. The O-boundaries are generated by
da=0=0y=0 = By={0}.
The 1-boundaries are generated by
ou =~v—0-—aq, OL=a—~v+p=-0U

and so By = Z[y — # — a]. On the other hand, B; = {0} for each i > 2.

12



e Next, we turn to the cycles. We note that Zy = Cy = Z[z] because every 0-chain has zero

136.

137.

boundary by definition, while Z; = C} = Z?|a, 3, 7] because every edge has zero boundary
by above. To find Z,, we note that

m-0U +n-0L=0 <= m(y—pF—a)+n(la—y+5)=0
< n=1m.

This gives one degree of freedom for the parameters m,n and it also implies
Zy={mU+mL : meZ}=2Z[U+ L.
On the other hand, it is clear that Z; = {0} for each i > 3.

Finally, we turn to the homology groups. The first three of those are given by
Z[z]

HOZW:Z[%’],

_ Zg[avﬁwv] _ 20&
Hl_Z[’y—ﬁ—a]—Z[ 75]7
Hy = 2V gy

{0}

Moreover, all higher homology groups are trivial by above.
We use the notation of Figure 2; see the last page. The O-boundaries are generated by
da=x—1x=0, =x—x=0
and this implies that By = {0}. In particular, it implies that B; = {0} for all i.
When it comes to the cycles, it is easy to see that
Zy=Cy=1Zz), Zi=C=2pb), Zo=2Z3=---={0}
because both the vertex x and the edges «, 3 have zero boundary by above.

Finally, we turn to the homology groups. The first two of those are given by

_@: T :Zz[avﬂ]: 20(

and all higher homology groups are trivial.

Hy

We use the notation of Figure 2; see the last page. The 0-boundaries are generated by
da=00=0y=0
and this implies that By = {0}. The 1-boundaries are generated by
ou=~v—0—-aq, OL=0—a—~
and so B; = Z*[y — 8 — «, 3 — a — 7). On the other hand, B; = {0} for each i > 2.
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e Next, we turn to the cycles. We note that Zy = Cy = Z[z] because every 0-chain has zero

138.

boundary by definition, while Z; = C} = Z?|a, 3, 7] because every edge has zero boundary
by above. To find Z,, we note that

m-0U+n-0L=0 <= m(y—pF—a)+n(f—-—a—7v)=0

<— m+n=m-n=20
<— m=n=0.

This also implies that Z; = {0} for any i > 2 whatsoever.

Finally, we turn to the homology groups. The first two of those are given by

Z[zx]

Hy Z[x],

=07 =
_ Z3[O‘:ﬂ77] _ Z?’[a,ﬁ,fy—ﬁ_a] B Z[&]
Hy = Z[y—fB-afB-a—n9 Zy-B-a2a] Z]2q] x 7).

Moreover, all higher homology groups are trivial by above.

We use the notation of Figure 3; see the last page. The O-boundaries are generated by
oo =1x —y, o=z —v, oy=0
and this implies that By = Z[x — y]. The 1-boundaries are generated by
oU =~v+ 0 —«, OL=p3—a—"~
and so By = Z*[y+ 3 — «a, 3 — a —v]. On the other hand, B; = {0} for each i > 2.

Next, we turn to the cycles. We note that Zy = Cy = Z?[z,y] because every O-chain has
zero boundary by definition. To find Z;, we note that

k-Oa+1-00+m-0y=0 < kr—y)+l(r—y)=0
— = —Fk.

This gives two degrees of freedom for the parameters k, [, m and it also implies
7y ={ka—kB+my : kym € Z} = Z*[a — B, 7).
To find Z5, we similarly note that

m-0U+n-0L=0 <= m(y+pf—a)+n(f—-—a—7) =
<~ m+n=m-n=20
< m=n=0.

This also implies that Z; = {0} for any i > 2 whatsoever.
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e Finally, we turn to the homology groups. The first two of those are given by

 ZPzyy] 2Pz —y,y)
Bo= g =)~ 2=y 2
2o — 3,7  Zla-By+B—-a]  Zla—f

Z2y+B—a,f—a—9] Zy+B-a,28—2a] Z[2a-28]

H, =

Moreover, all higher homology groups are trivial by above.

139. We use the notation of Figure 3; see the last page. Since dxr = da = 0, we have B; = {0}
for any ¢ > 0 whatsoever. When it comes to the cycles, it is easy to see that

ZOZCO:Z[:B]’ 21201:Z[a]’ 22:Z3::{0}
because both the vertex x and the edge o have zero boundary by above. In particular,

_ 2 _
{0}

and all higher homology groups are trivial.

Z[a]

H[) :W:

Z[z], H, Z[a]

140. One way to compute the Euler characteristic of the torus 7" is to note that
Hy(T) = Z, H(T) = z?, Hy(T) = Z, H3(T) = Hy(T) = --- = {0}
by Problem 135, whence x(7') =1 — 2+ 1 = 0. Alternatively, one can note that
Co(T) =2, Ci(T) = Zga Co(T) = ZQa C3(T) = Cu(T) = --- = {0}

and then use the Euler-Poincaré theorem to conclude that x(7) =1 -3+ 2 = 0.
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Figure 3: The projective space RP? and the unit circle S*.
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