Maths 212: Homework Solutions

- 55. Despite the original statement of this problem, one has to also assume that the given space is Hausdorff. Suppose then that X is a Hausdorff, limit point compact topological space and let $f: X \to Y$ be continuous.
 - Assume A is an infinite subset of the image that has no limit points. In what follows, we denote the elements of A by $f(x_{\alpha})$, using distinct indices for distinct elements. Since no element of A is a limit point by assumption, each $f(x_{\alpha})$ has a neighbourhood U_{α} which contains no other $f(x_{\beta})$. In particular, the inverse images $V_{\alpha} = f^{-1}(U_{\alpha})$ are such that

$$x_{\beta} \in V_{\alpha} \iff f(x_{\beta}) \in U_{\alpha} \iff f(x_{\beta}) = f(x_{\alpha}) \iff \beta = \alpha.$$

This means that each V_{α} contains x_{α} but no other x_{β} . Now, consider the set

$$B = \{x_{\alpha} \in X : f(x_{\alpha}) \in A\} \subset f^{-1}(A).$$

Being an infinite subset of X, this set has a limit point x, and we must actually have

$$x \in \operatorname{Cl} B \subset \operatorname{Cl} f^{-1}(A).$$

Since A has no limit points, however, A is closed, and so is its inverse image. This gives

$$x \in f^{-1}(A) \implies f(x) \in A \implies f(x) = f(x_{\alpha}) \in U_{\alpha} \implies x \in V_{\alpha}$$

for some α . Moreover, x_{α} is not a limit point of B, as its neighbourhood V_{α} contains no other x_{β} . In particular, $x_{\alpha} \neq x$ and we may now use the fact that X is Hausdorff to find a neighbourhood W of x which fails to contain x_{α} . This makes $V_{\alpha} \cap W$ a neighbourhood of x which contains no x_{β} at all, contrary to the fact that x is a limit point of B.

• Finally, we show that the continuous image of a limit point compact topological space X need not be limit point compact in general. To see this, we note that the set

$$\mathscr{B} = \{\ldots, \{-1, 0\}, \{1, 2\}, \{3, 4\}, \ldots\}$$

forms a basis for some topology on $X = \mathbb{Z}$. With respect to this topology, X is limit point compact because any subset containing -1 has 0 as a limit point, any subset containing 1 has 2 as a limit point, and so on. Let us now define a function $f: \mathbb{Z} \to 2\mathbb{Z}$ by setting

$$f(-1) = f(0) = 0,$$
 $f(1) = f(2) = 2,$ $f(3) = f(4) = 4,$

and so on. If we equip $2\mathbb{Z}$ with the discrete topology, then f is continuous because

$$f^{-1}(2n) = \{2n - 1, 2n\}$$

is open in X for each n. However, the image $2\mathbb{Z}$ is not limit point compact because every element of $2\mathbb{Z}$ has a neighbourhood which only contains that element.

56. Suppose that A is an infinite subset of $Y \subset X$. Since X is limit point compact, A has a limit point $x \in X$. This limit point of A lies in the closure of A, so

$$x \in \operatorname{Cl} A \subset \operatorname{Cl} Y = Y$$

because $A \subset Y$ and since Y is closed. In particular, the limit point x is actually in Y.

57. Define $f: X \to \mathbb{R}$ by the formula $f(x, y) = x^2 + y^2 - 1$. Being a polynomial function, f is then continuous, so the composition $f \circ \gamma \colon [0, 1] \to \mathbb{R}$ is continuous as well. Moreover,

$$f(\gamma(0)) = f(x_0, y_0) = x_0^2 + y_0^2 - 1$$

is negative because (x_0, y_0) lies in the interior of the unit circle, while

$$f(\gamma(1)) = f(x_1, y_1) = x_1^2 + y_1^2 - 1$$

is positive because (x_1, y_1) lies in the exterior of the unit circle. Invoking the intermediate value property for continuous functions, we find that some 0 < t < 1 exists such that

$$f(\gamma(t)) = 0.$$

This actually shows that $\gamma(t)$ lies on the unit circle, contrary to the fact that $\gamma(t) \in X$.

58. To show that $\delta = 1$ is a Lebesgue number for the given open cover, let U be a nonempty subset of X with diameter less than 1 and let $x \in U$ be arbitrary. Since

$$y \in U \implies d(x, y) \leq \operatorname{diam} U < 1 \implies y \in B_1(x),$$

we conclude that U is contained in $B_1(x)$, which is a single element of \mathcal{U} .

- 59. Suppose that X is sequentially compact and that U_1, U_2, \ldots form an open cover of X. If this cover has no finite subcover, then $V_n = U_1 \cup \cdots \cup U_n$ fails to cover X for each n, so we can always find a point $x_n \notin V_n$. This gives us a sequence x_n of points in X; let x_{n_k} be a convergent subsequence, say $x_{n_k} \to x$. Since the U_i 's cover X, we have $x \in U_N$ for some N, and since $x_{n_k} \to x$, we also have $x_{n_k} \in U_N$ for all large enough k. Assuming k is so large that $n_k > N$, however, this leads to the contradiction $x_{n_k} \in U_N \subset V_N \subset V_{n_k}$.
- 60. Suppose that X is a countably compact topological space.

Step 1. We show that every closed subset $A \subset X$ is countably compact. Indeed, given a countable open cover of A, we may append X - A to get a countable open cover of X. Since the latter cover has a finite subcover, however, the former one does as well.

Step 2. We show that every countable subset $A \subset X$ which has no limit points is finite. Note that such a subset is automatically closed, hence also countably compact by Step 1. Now, given a point $x \in A$, we know that x is not a limit point of A, so we can always find a neighbourhood U_x of x which contains no other point of A. Since the sets U_x form a countable open cover of A, finitely many of them will then cover A, say n. Since each of them contains exactly one element of A, we conclude that A has exactly n elements. **Step 3.** We show that every infinite subset $B \subset X$ has a limit point. Pick a point $x_1 \in B$, a second point $x_2 \neq x_1$, and so on. Since B is infinite, we can proceed in this manner to obtain an infinite subset $A \subset B$ which is also countable. In view of Step 2, such a subset does have a limit point x. Being a limit point of A, however, x is also a limit point of the bigger set B. Namely, every neighbourhood of x intersects A at a point other than x, so it actually intersects B at a point other than x.

- 61. A countably compact metric space is limit point compact by the previous problem, so it must actually be compact as well. In other words, there is no such metric space.
- 62. To check reflexivity, we need to check that every element $x \in X$ lies in some connected subset of X; this is clear because x lies in the connected set $\{x\}$. To check symmetry, we need to check that x, y lie in some connected subset of X whenever y, x do; this is also clear. To check transitivity, suppose that x, y lie in the connected set A and that y, z lie in the connected set B. Since A and B have a point in common, their union $A \cup B$ is then a connected set that contains each of x, z.
 - Finally, we show that every equivalence class C is connected. Suppose that A|B forms a partition of C. Since the sets A, B are nonempty, we can choose points $a \in A$ and $b \in B$. Being in the same equivalence class, these points must lie in some connected set C_0 . Since every element of C_0 is in the equivalence class of a, this actually implies that $C_0 \subset C$. In particular, C_0 is a connected subset of the partition, so it must lie entirely within a single part. Assuming that $C_0 \subset A$ without loss of generality, one finds that $b \in C_0 \subset A$, which is contrary to the fact that A and B are disjoint.
- 63. Note that f_n converges pointwise to the zero function because $f_n(1) = 0$ for all n and

$$f_n(x) = x^n(1-x) \to 0$$
 whenever $0 \le x < 1$.

To see whether the convergence is uniform, we note that

$$f_n(x) = x^n - x^{n+1} \implies f'_n(x) = x^{n-1} \Big(n - (n+1)x \Big).$$

This makes $f_n(x)$ increasing on $[0, \frac{n}{n+1})$ and decreasing on $(\frac{n}{n+1}, 1]$, hence

$$\sup_{0 \le x \le 1} |f_n(x)| = \sup_{0 \le x \le 1} f_n(x) = \left(\frac{n}{n+1}\right)^n \cdot \left(1 - \frac{n}{n+1}\right) \longrightarrow \frac{1}{e} \cdot 0 = 0.$$

64. Let $\varepsilon > 0$ be arbitrary. Given any points x, y in the interval (1, 2), we then have

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \frac{|x - y|}{xy} \le |x - y|$$

because xy > 1. This implies that $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \varepsilon$, as needed.

65. Let $\varepsilon = 1/2$. Given any $\delta > 0$, we can choose n large enough so that

$$\left|\frac{1}{n+1} - \frac{1}{n}\right| = \frac{1}{n(n+1)} < \frac{1}{n} < \delta.$$

Since we also have

$$\left| f\left(\frac{1}{n+1}\right) - f\left(\frac{1}{n}\right) \right| = (n+1) - n = 1 > \varepsilon,$$

we may conclude that f(x) is not uniformly continuous on (0, 1).

66. Being the uniform limit of continuous functions, f is continuous itself. Since $x_n \to x$, we must thus have $f(x_n) \to f(x)$ as well. Given $\varepsilon > 0$, this actually implies that

$$|f(x_n) - f(x)| < \varepsilon$$

for all large enough n. Moreover, the convergence $f_n \to f$ is uniform, so we also have

$$|f_n(x) - f(x)| < \varepsilon$$
 for all $x \in X$ and all large enough n .

Combining the last two equations with the triangle inequality, we now find that

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| < 2\varepsilon$$

for all large enough n. In particular, we find that $f_n(x_n) \to f(x)$, as needed.

67. Since the convergence $f_n \to f$ is uniform, there exists an integer N such that

$$|f_n(x) - f(x)| < 1$$
 for all $x \in X$ and each $n \ge N$.

Using the triangle inequality, we then find that

$$|f(x)| \le |f(x) - f_N(x)| + |f_N(x)| < 1 + |f_N(x)|$$
 for all $x \in X$.

68. In view of the previous problem, f and g are both bounded. Let M > 0 be such that

$$|f(x)| \le M$$
, $|g(x)| \le M$ for all $x \in X$

and fix some $\varepsilon > 0$. Since $f_n \to f$ uniformly, we can then find an integer N_1 such that

$$|f_n(x) - f(x)| < M$$
 for all $x \in X$ and each $n \ge N_1$.

For the exact same reason, we can also find an integer N_2 such that

$$|f_n(x) - f(x)| < \varepsilon$$
 for all $x \in X$ and each $n \ge N_2$.

Moreover, the convergence $g_n \to g$ is also uniform, so some integer N_3 exists such that

$$|g_n(x) - g(x)| < \varepsilon$$
 for all $x \in X$ and each $n \ge N_3$.

Let us now set $N = \max(N_1, N_2, N_3)$. Using the triangle inequality, we then get

$$|f_n(x)g_n(x) - f(x)g(x)| \le |f_n(x)| \cdot |g_n(x) - g(x)| + |g(x)| \cdot |f_n(x) - f(x)|$$

$$\le |f_n(x)| \cdot \varepsilon + M\varepsilon$$

for all $x \in X$ and each $n \ge N$ by above. Since we also have

$$|f_n(x)| \le |f_n(x) - f(x)| + |f(x)| < 2M$$

for all $x \in X$ and each $n \ge N$, this actually implies that

$$|f_n(x)g_n(x) - f(x)g(x)| < 2M\varepsilon + M\varepsilon = 3M\varepsilon$$

for all $x \in X$ and each $n \geq N$. In particular, the convergence $f_n g_n \to fg$ is uniform.

69. Let $\varepsilon > 0$ be arbitrary. Since f is uniformly continuous, there exists some $\delta > 0$ such that

$$d(x,y) < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Since the sequence x_n is Cauchy, there also exists an integer N such that

$$d(x_m, x_n) < \delta$$
 for all $m, n \ge N$.

Once we now combine the last two equations, we find that

$$|f(x_m) - f(x_n)| < \varepsilon$$
 for all $m, n \ge N$.

In particular, the sequence $f(x_n)$ is also Cauchy, as needed.

70. It is clear that f_n converges pointwise to the zero function. To show that the convergence is actually uniform, it remains to show that

$$\sup_{x} |f_n(x)| = \sup_{x} \frac{|x|}{1 + nx^2}$$

tends to zero as $n \to \infty$. Since this is an even function of x, we might as well set

$$g_n(x) = \frac{x}{1 + nx^2}$$

and focus solely on points $x \ge 0$. According to the quotient rule, we then have

$$g'_n(x) = \frac{1 + nx^2 - 2nx \cdot x}{(1 + nx^2)^2} = \frac{1 - nx^2}{(1 + nx^2)^2}.$$

This makes g_n increasing on $[0, 1/\sqrt{n})$ and decreasing on $(1/\sqrt{n}, \infty)$, hence

$$\sup_{x} |f_n(x)| = \sup_{x \ge 0} g_n(x) = g_n(1/\sqrt{n}) = \frac{1}{2\sqrt{n}} \longrightarrow 0.$$

71. Let $\varepsilon > 0$ be arbitrary. Since $f_n \to f$ uniformly, some integer N exists such that

$$|f_n(x) - f(x)| < \varepsilon$$
 for all $x \in X$ and each $n \ge N$.

Since each f_n is uniformly continuous on X, there also exists some $\delta_n > 0$ such that

$$d(x,y) < \delta_n \implies |f_n(x) - f_n(y)| < \varepsilon \quad \text{for all } x, y \in X.$$

If we now assume that $d(x, y) < \delta_N$, then the triangle inequality ensures that

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| < 3\varepsilon.$$

In particular, f is also uniformly continuous on X, as needed.

72. Let X be a discrete metric space and suppose that $\{x_n\}$ is a Cauchy sequence in X. Then there exists an integer N such that

 $d(x_m, x_n) < 1$ for all $m, n \ge N$.

Since d is the discrete metric, this actually means that

$$x_m = x_n$$
 for all $m, n \ge N$.

In particular, the given sequence converges to x_N because

 $d(x_n, x_N) = 0 < \varepsilon$ for all $n \ge N$ and each $\varepsilon > 0$.

- 73. Let A, B be the two subsets and let x_n be a Cauchy sequence in their union. Since each term of the sequence lies in either A or B, one of these sets must contain infinitely many terms. In particular, some subsequence x_{n_k} lies entirely within either A or B. Since this subsequence is also Cauchy, the completeness of A, B ensures that x_{n_k} actually converges. Being a Cauchy sequence with a convergent subsequence, the original sequence must then converge as well.
- 74. Since every continuous function on a compact set is bounded, A is certainly contained in the space $X = \mathscr{B}([0,1],\mathbb{R})$. Moreover, the latter space is complete, so we need only show that A is closed in it. Suppose that $f \in \operatorname{Cl} A$ and let $f_n \in A$ be a sequence of points in Asuch that $f_n \to f$ in the d_{∞} -metric. Then $f_n \to f$ uniformly, so the limit f is continuous. This shows that $f \in A$ itself, and it also establishes the desired inclusion $\operatorname{Cl} A \subset A$.
- 75. Since every polynomial is continuous, A is certainly contained in the space $\mathcal{C}([0, 1])$ of the previous problem. Moreover, the latter space is complete, so we need only show that A is not closed in it. Said differently, it suffices to find a sequence of polynomials $f_n \in A$ that converge uniformly to a function f which is not a polynomial. Now, the polynomials

$$f_n(x) = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} = \sum_{k=0}^n \frac{x^k}{k!}$$

are known to converge uniformly to the exponential function $f(x) = e^x$. In addition, this function is not a polynomial because f' = f, whereas the derivative of any polynomial is some other polynomial of lower degree.

76. Given any points x, y in the unit interval (0, 1), one easily finds that

$$|x^{2} - y^{2}| = |x + y| \cdot |x - y| \le 2 \cdot |x - y|.$$

In particular, one finds that $f(x) = x^2/3$ is a contraction on (0, 1) because

$$|f(x) - f(y)| = \frac{|x^2 - y^2|}{3} \le \frac{2}{3} \cdot |x - y|$$

for all $x, y \in (0, 1)$ by above. To see that f fails to have a fixed point, we note that

$$f(x) = x \implies \frac{x^2}{3} = x \implies x = 0, 3 \implies x \notin (0, 1).$$

Finally, this example does not violate Banach's theorem because (0, 1) is not complete.

77. Since X is complete, it suffices to show that T is a contraction. Once we note that

$$|T(f)(x) - T(g)(x)| \le \int_0^x |f(t) - g(t)| \, dt \le x \cdot d_\infty(f,g)$$

for each $0 \le x \le 1/2$, we may immediately deduce the desired

$$d_{\infty}(T(f), T(g)) \le \frac{1}{2} \cdot d_{\infty}(f, g).$$

78. Being continuous on a compact set, f' is also bounded, say

$$|f'(s)| \le K$$
 for all $0 \le s \le 1$.

Using the fundamental theorem of calculus, we then find that

$$|f(x) - f(y)| = \left| \int_y^x f'(s) \, ds \right| \le K|x - y|.$$

79. Indeed, \mathbb{R} is complete and the function $f(x) = \frac{x^2}{1+x^2}$ is continuous, yet the image $f(\mathbb{R}) = [0, 1)$

is not complete because it is not closed in \mathbb{R} .

- 80. The sequence of open intervals $A_n = (0, 1/n)$ is easily seen to be such.
- 81. The sequence of closed intervals $B_n = [n, \infty)$ is easily seen to be such.
- 82. Given an infinite discrete metric space X, one has

$$d(x, y) \le 1$$
 for all $x, y \in X$

and this shows that X is bounded. On the other hand, X has no finite 1-net because

$$B_1(x) = \{ y \in X : d(x, y) < 1 \} = \{ x \},\$$

so that finitely many balls of radius 1 may only cover finitely many elements of X.

- 83. Suppose that $f(x_n)$ is a sequence in the image. Since X is totally bounded by assumption, the sequence x_n does have a Cauchy subsequence x_{n_k} . According to Problem 69 then, the corresponding subsequence $f(x_{n_k})$ must also be Cauchy. This shows that every sequence in f(X) has a Cauchy subsequence, which implies that f(X) is totally bounded.
- 84. Let $\varepsilon = 1$. Given any $\delta > 0$, we can choose n large enough so that $x_n = 1/n$ satisfies

$$|x_n - 0| = 1/n < \delta.$$

Since we also have

$$|f_n(x_n) - f_n(0)| = (n + 1/n)^2 - n^2 = 2 + \frac{1}{n^2} > 2 > \varepsilon,$$

the sequence $f_n(x)$ is not equicontinuous at the origin.

85. Let $\varepsilon = 1$. Given any $\delta > 0$, we can choose n large enough so that $x_n = \pi/n$ satisfies

$$|x_n - 0| = \pi/n < \delta.$$

Since we also have

$$f_n(x_n) - f_n(0)| = |\cos \pi - \cos 0| = 2 > \varepsilon_s$$

the sequence $f_n(x)$ is not equicontinuous at the origin.

86. Since $A_1 = X$ is compact, its continuous image $A_2 = f(A_1)$ is compact with

$$A_2 = f(A_1) = f(X) \subset X = A_1.$$

Using the exact same argument, one finds that $A_3 = f(A_2)$ is compact with

$$A_2 \subset A_1 \implies f(A_2) \subset f(A_1) \implies A_3 \subset A_2$$

Thus, we may proceed in this manner to obtain a nested sequence of nonempty, compact subsets of X. Being compact in the Hausdorff space X, these sets are all closed in X, so their intersection $A = A_1 \cap A_2 \cap \cdots$ is closed as well. Moreover, A is nonempty due to the intersection property of compact spaces. Once we now note that the image

$$f(A) = \bigcap_{n=1}^{\infty} f(A_n) = \bigcap_{n=1}^{\infty} A_{n+1} = \bigcap_{n=2}^{\infty} A_n$$

lies in X, we may conclude that

$$f(A) = f(A) \cap X = f(A) \cap A_1 = \bigcap_{n=1}^{\infty} A_n = A.$$

87a. Suppose that $x \in ClA$ and let $x_n \in A$ be such that $x_n \to x$. Then the inequality

$$\rho(x) = \inf_{z \in A} d(x, z) \le d(x, x_n)$$

must hold for each $n \ge 1$, so we may let $n \to \infty$ to deduce that

$$\rho(x) \le 0.$$

Since we also have $\rho(x) \ge 0$ by definition, this actually implies that $\rho(x) = 0$.

• Suppose now that $\rho(x) = 0$. Given any positive integer n, we then have

$$\inf_{z\in A} d(x,z) = \rho(x) = 0 < 1/n,$$

so 1/n is not a lower bound for d(x, z). This means that some $z_n \in A$ is such that

$$d(x, z_n) < 1/n.$$

Once we now note that $z_n \to x$ by the last equation, we may conclude that $x \in \operatorname{Cl} A$. 87b. Let $x, y \in X$ be arbitrary. Given any $z \in A$, we must then have

$$\rho(x) \le d(x, z) \le d(x, y) + d(y, z)$$

by the triangle inequality. Taking the infimum over all $z \in A$, we thus find

$$\rho(x) \le d(x,y) + \rho(y) \implies \rho(x) - \rho(y) \le d(x,y).$$

Since the same argument applies to give $\rho(y) - \rho(x) \leq d(y, x)$, we actually have

$$|\rho(x) - \rho(y)| \le d(x, y).$$

88. Define the function $T: \mathcal{C}([0,1]) \to \mathcal{C}([0,1])$ by the formula

$$T(f)(x) = \int_0^x (x - y) f(y) \, dy \qquad \text{for each } 0 \le x \le 1.$$

Then we have

$$|T(f)(x) - T(g)(x)| \le \int_0^x (x - y) \cdot |f(y) - g(y)| \, dy$$

$$\le d_\infty(f, g) \int_0^x (x - y) \, dy$$

and we may use the substitution u = x - y to get

$$\int_0^x (x-y) \, dy = \int_0^x u \, du = \frac{x^2}{2} \le \frac{1}{2} \, .$$

Once we now combine the last two equations, we arrive at

$$|T(f)(x) - T(g)(x)| \le \frac{1}{2} \cdot d_{\infty}(f,g) \implies d_{\infty}(T(f),T(g)) \le \frac{1}{2} \cdot d_{\infty}(f,g).$$

This shows that T is a contraction, so T has a unique fixed point by Banach's theorem. Since the zero function is clearly a fixed point, there is no other fixed point, indeed. 89. Suppose that f is not constant. Then there exists some $a \in \mathbb{R}$ such that

$$\varepsilon = \frac{|f(a) - f(0)|}{2}$$

is positive. Given $\delta > 0$, let us now choose n large enough so that $x_n = a/n$ satisfies

$$|x_n - 0| = |a|/n < \delta.$$

Since we also have

$$|f_n(x_n) - f_n(0)| = |f(a) - f(0)| = 2\varepsilon > \varepsilon,$$

the sequence f_n cannot be equicontinuous at the origin, as needed.

90. Note that the given sequence is bounded by a single constant, since

$$|F_n(x)| \le \int_0^x |f_n(s)| \, ds \le \int_0^x \, ds = x \le 1$$

for all $0 \le x \le 1$ and each $n \ge 1$. In addition, the inequality

$$|F_n(x) - F_n(y)| = \left| \int_y^x f_n(s) \, ds \right| \le |x - y|$$

implies that the sequence F_n is equicontinuous, as it certainly implies that

$$|x-y| < \varepsilon \implies |F_n(x) - F_n(y)| \le |x-y| < \varepsilon.$$

In view of the corollary to the Arzela-Ascoli theorem, this also completes the proof.

91. Since the sequence f_n is equicontinuous on a compact set, it is uniformly equicontinuous. Given $\varepsilon > 0$, we may thus find some $\delta > 0$ such that

$$d(x,y) < \delta \implies |f_n(x) - f_n(y)| < \varepsilon \text{ for all } x, y \in X \text{ and each } n \ge 1.$$

Since X is compact, X is totally bounded as well, so it has a finite δ -net, say y_1, \ldots, y_j . By assumption, the sequence $f_n(y_i)$ converges to $f(y_i)$ for each *i*, so this sequence is also Cauchy for each *i*. In particular, we can always find an integer N_i such that

$$|f_n(y_i) - f_m(y_i)| < \varepsilon$$
 for all $m, n \ge N_i$.

Letting N denote the maximum of the finitely many N_i 's, we thus arrive at

$$|f_n(y_i) - f_m(y_i)| < \varepsilon$$
 for all $m, n \ge N$ and each $1 \le i \le j$.

Suppose now that $x \in X$ is arbitrary. Since $d(x, y_i) < \delta$ for some *i*, we also have

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_n(y_i)| + |f_n(y_i) - f_m(y_i)| + |f_m(y_i) - f_m(x)| < 3\varepsilon$$

for all $m, n \ge N$ by above. This shows that the sequence f_n is uniformly Cauchy, which also implies it is uniformly convergent.

92. Fix some $\varepsilon > 0$. Since $f_n \to f$ uniformly, some integer N exists such that

$$|f_n(x) - f(x)| < \varepsilon$$
 for all $0 \le x \le 1$ and each $n \ge N$.

As long as $n \ge N$, in particular, we must also have

$$\left| \int_{0}^{1} f_{n}(x) \, dx - \int_{0}^{1} f(x) \, dx \right| = \left| \int_{0}^{1} [f_{n}(x) - f(x)] \, dx \right| < \int_{0}^{1} \varepsilon \, dx = \varepsilon.$$

93. Let $\varepsilon = 1/2$. Given any $\delta > 0$, we can choose n large enough so that $x_n = 1/n$ satisfies

$$|x_n - 0| = 1/n < \delta.$$

Since we also have

$$|f_n(x_n) - f_n(0)| = |1 - 0| > \varepsilon,$$

the functions f_n do not form an equicontinuous family at the origin.

94. To see that F is closed, suppose $f \in \operatorname{Cl} F$ and let $f_n \in F$ be such that $f_n \to f$ uniformly. Then f is the uniform limit of continuous functions, hence also continuous. Moreover,

$$|f_n(x) - f_n(y)| \le |x - y| \qquad \text{for all } 0 \le x, y \le 1$$

so we can let $n \to \infty$ to find that

$$|f(x) - f(y)| \le |x - y| \quad \text{for all } 0 \le x, y \le 1$$

And since $f_n(0) = 0$ for all n, we must similarly have f(0) = 0 as well.

• To see that F is bounded, we note that each $f \in F$ is such that

$$|f(x) - f(0)| \le |x - 0| \implies |f(x)| \le |x| \le 1 \quad \text{for all } 0 \le x \le 1.$$

• To see that F is equicontinuous, we let $\varepsilon > 0$ be arbitrary and note that

$$|x-y| < \varepsilon \implies |f(x) - f(y)| \le |x-y| < \varepsilon$$
 for all $f \in F$.

Since F is closed, bounded and equicontinuous, it is also compact by Arzela-Ascoli.