
Maths 212: Homework Solutions

55. Despite the original statement of this problem, one has to also assume that the given space
is Hausdorff. Suppose then that X is a Hausdorff, limit point compact topological space
and let f : X → Y be continuous.

• Assume A is an infinite subset of the image that has no limit points. In what follows, we
denote the elements of A by f(xα), using distinct indices for distinct elements. Since no
element of A is a limit point by assumption, each f(xα) has a neighbourhood Uα which
contains no other f(xβ). In particular, the inverse images Vα = f−1(Uα) are such that

xβ ∈ Vα ⇐⇒ f(xβ) ∈ Uα ⇐⇒ f(xβ) = f(xα) ⇐⇒ β = α.

This means that each Vα contains xα but no other xβ. Now, consider the set

B = {xα ∈ X : f(xα) ∈ A} ⊂ f−1(A).

Being an infinite subset of X, this set has a limit point x, and we must actually have

x ∈ Cl B ⊂ Cl f−1(A).

Since A has no limit points, however, A is closed, and so is its inverse image. This gives

x ∈ f−1(A) =⇒ f(x) ∈ A =⇒ f(x) = f(xα) ∈ Uα =⇒ x ∈ Vα

for some α. Moreover, xα is not a limit point of B, as its neighbourhood Vα contains no
other xβ. In particular, xα 6= x and we may now use the fact that X is Hausdorff to find
a neighbourhood W of x which fails to contain xα. This makes Vα ∩W a neighbourhood
of x which contains no xβ at all, contrary to the fact that x is a limit point of B.

• Finally, we show that the continuous image of a limit point compact topological space X
need not be limit point compact in general. To see this, we note that the set

B = {. . . , {−1, 0}, {1, 2}, {3, 4}, . . .}
forms a basis for some topology on X = Z. With respect to this topology, X is limit point
compact because any subset containing −1 has 0 as a limit point, any subset containing 1
has 2 as a limit point, and so on. Let us now define a function f : Z→ 2Z by setting

f(−1) = f(0) = 0, f(1) = f(2) = 2, f(3) = f(4) = 4,

and so on. If we equip 2Z with the discrete topology, then f is continuous because

f−1(2n) = {2n− 1, 2n}
is open in X for each n. However, the image 2Z is not limit point compact because every
element of 2Z has a neighbourhood which only contains that element.



56. Suppose that A is an infinite subset of Y ⊂ X. Since X is limit point compact, A has a
limit point x ∈ X. This limit point of A lies in the closure of A, so

x ∈ Cl A ⊂ Cl Y = Y

because A ⊂ Y and since Y is closed. In particular, the limit point x is actually in Y .

57. Define f : X → R by the formula f(x, y) = x2 + y2 − 1. Being a polynomial function, f is
then continuous, so the composition f ◦ γ : [0, 1] → R is continuous as well. Moreover,

f(γ(0)) = f(x0, y0) = x2
0 + y2

0 − 1

is negative because (x0, y0) lies in the interior of the unit circle, while

f(γ(1)) = f(x1, y1) = x2
1 + y2

1 − 1

is positive because (x1, y1) lies in the exterior of the unit circle. Invoking the intermediate
value property for continuous functions, we find that some 0 < t < 1 exists such that

f(γ(t)) = 0.

This actually shows that γ(t) lies on the unit circle, contrary to the fact that γ(t) ∈ X.

58. To show that δ = 1 is a Lebesgue number for the given open cover, let U be a nonempty
subset of X with diameter less than 1 and let x ∈ U be arbitrary. Since

y ∈ U =⇒ d(x, y) ≤ diam U < 1 =⇒ y ∈ B1(x),

we conclude that U is contained in B1(x), which is a single element of U .

59. Suppose that X is sequentially compact and that U1, U2, . . . form an open cover of X. If
this cover has no finite subcover, then Vn = U1 ∪ · · · ∪ Un fails to cover X for each n, so
we can always find a point xn /∈ Vn. This gives us a sequence xn of points in X; let xnk

be a convergent subsequence, say xnk
→ x. Since the Ui’s cover X, we have x ∈ UN for

some N , and since xnk
→ x, we also have xnk

∈ UN for all large enough k. Assuming k is
so large that nk > N , however, this leads to the contradiction xnk

∈ UN ⊂ VN ⊂ Vnk
.

60. Suppose that X is a countably compact topological space.

Step 1. We show that every closed subset A ⊂ X is countably compact. Indeed, given
a countable open cover of A, we may append X − A to get a countable open cover of X.
Since the latter cover has a finite subcover, however, the former one does as well.

Step 2. We show that every countable subset A ⊂ X which has no limit points is finite.
Note that such a subset is automatically closed, hence also countably compact by Step 1.
Now, given a point x ∈ A, we know that x is not a limit point of A, so we can always find
a neighbourhood Ux of x which contains no other point of A. Since the sets Ux form a
countable open cover of A, finitely many of them will then cover A, say n. Since each of
them contains exactly one element of A, we conclude that A has exactly n elements.

2



Step 3. We show that every infinite subset B ⊂ X has a limit point. Pick a point x1 ∈ B,
a second point x2 6= x1, and so on. Since B is infinite, we can proceed in this manner to
obtain an infinite subset A ⊂ B which is also countable. In view of Step 2, such a subset
does have a limit point x. Being a limit point of A, however, x is also a limit point of the
bigger set B. Namely, every neighbourhood of x intersects A at a point other than x, so
it actually intersects B at a point other than x.

61. A countably compact metric space is limit point compact by the previous problem, so it
must actually be compact as well. In other words, there is no such metric space.

62. To check reflexivity, we need to check that every element x ∈ X lies in some connected
subset of X; this is clear because x lies in the connected set {x}. To check symmetry, we
need to check that x, y lie in some connected subset of X whenever y, x do; this is also
clear. To check transitivity, suppose that x, y lie in the connected set A and that y, z lie
in the connected set B. Since A and B have a point in common, their union A∪B is then
a connected set that contains each of x, z.

• Finally, we show that every equivalence class C is connected. Suppose that A|B forms a
partition of C. Since the sets A,B are nonempty, we can choose points a ∈ A and b ∈ B.
Being in the same equivalence class, these points must lie in some connected set C0. Since
every element of C0 is in the equivalence class of a, this actually implies that C0 ⊂ C. In
particular, C0 is a connected subset of the partition, so it must lie entirely within a single
part. Assuming that C0 ⊂ A without loss of generality, one finds that b ∈ C0 ⊂ A, which
is contrary to the fact that A and B are disjoint.

63. Note that fn converges pointwise to the zero function because fn(1) = 0 for all n and

fn(x) = xn(1− x) → 0 whenever 0 ≤ x < 1.

To see whether the convergence is uniform, we note that

fn(x) = xn − xn+1 =⇒ f ′n(x) = xn−1
(
n− (n + 1)x

)
.

This makes fn(x) increasing on [0, n
n+1

) and decreasing on ( n
n+1

, 1], hence

sup
0≤x≤1

|fn(x)| = sup
0≤x≤1

fn(x) =

(
n

n + 1

)n

·
(

1− n

n + 1

)
−→ 1

e
· 0 = 0.

64. Let ε > 0 be arbitrary. Given any points x, y in the interval (1, 2), we then have

|f(x)− f(y)| =
∣∣∣∣
1

x
− 1

y

∣∣∣∣ =
|x− y|

xy
≤ |x− y|

because xy > 1. This implies that |f(x)− f(y)| < ε whenever |x− y| < ε, as needed.
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65. Let ε = 1/2. Given any δ > 0, we can choose n large enough so that
∣∣∣∣

1

n + 1
− 1

n

∣∣∣∣ =
1

n(n + 1)
<

1

n
< δ.

Since we also have
∣∣∣∣f

(
1

n + 1

)
− f

(
1

n

)∣∣∣∣ = (n + 1)− n = 1 > ε,

we may conclude that f(x) is not uniformly continuous on (0, 1).

66. Being the uniform limit of continuous functions, f is continuous itself. Since xn → x, we
must thus have f(xn) → f(x) as well. Given ε > 0, this actually implies that

|f(xn)− f(x)| < ε

for all large enough n. Moreover, the convergence fn → f is uniform, so we also have

|fn(x)− f(x)| < ε for all x ∈ X and all large enough n.

Combining the last two equations with the triangle inequality, we now find that

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| < 2ε

for all large enough n. In particular, we find that fn(xn) → f(x), as needed.

67. Since the convergence fn → f is uniform, there exists an integer N such that

|fn(x)− f(x)| < 1 for all x ∈ X and each n ≥ N .

Using the triangle inequality, we then find that

|f(x)| ≤ |f(x)− fN(x)|+ |fN(x)| < 1 + |fN(x)| for all x ∈ X.

68. In view of the previous problem, f and g are both bounded. Let M > 0 be such that

|f(x)| ≤ M, |g(x)| ≤ M for all x ∈ X

and fix some ε > 0. Since fn → f uniformly, we can then find an integer N1 such that

|fn(x)− f(x)| < M for all x ∈ X and each n ≥ N1.

For the exact same reason, we can also find an integer N2 such that

|fn(x)− f(x)| < ε for all x ∈ X and each n ≥ N2.

Moreover, the convergence gn → g is also uniform, so some integer N3 exists such that

|gn(x)− g(x)| < ε for all x ∈ X and each n ≥ N3.

4



Let us now set N = max(N1, N2, N3). Using the triangle inequality, we then get

|fn(x)gn(x)− f(x)g(x)| ≤ |fn(x)| · |gn(x)− g(x)|+ |g(x)| · |fn(x)− f(x)|
≤ |fn(x)| · ε + Mε

for all x ∈ X and each n ≥ N by above. Since we also have

|fn(x)| ≤ |fn(x)− f(x)|+ |f(x)| < 2M

for all x ∈ X and each n ≥ N , this actually implies that

|fn(x)gn(x)− f(x)g(x)| < 2Mε + Mε = 3Mε

for all x ∈ X and each n ≥ N . In particular, the convergence fngn → fg is uniform.

69. Let ε > 0 be arbitrary. Since f is uniformly continuous, there exists some δ > 0 such that

d(x, y) < δ =⇒ |f(x)− f(y)| < ε.

Since the sequence xn is Cauchy, there also exists an integer N such that

d(xm, xn) < δ for all m,n ≥ N .

Once we now combine the last two equations, we find that

|f(xm)− f(xn)| < ε for all m,n ≥ N .

In particular, the sequence f(xn) is also Cauchy, as needed.

70. It is clear that fn converges pointwise to the zero function. To show that the convergence
is actually uniform, it remains to show that

sup
x
|fn(x)| = sup

x

|x|
1 + nx2

tends to zero as n →∞. Since this is an even function of x, we might as well set

gn(x) =
x

1 + nx2

and focus solely on points x ≥ 0. According to the quotient rule, we then have

g′n(x) =
1 + nx2 − 2nx · x

(1 + nx2)2
=

1− nx2

(1 + nx2)2
.

This makes gn increasing on [0, 1/
√

n ) and decreasing on (1/
√

n,∞), hence

sup
x
|fn(x)| = sup

x≥0
gn(x) = gn(1/

√
n ) =

1

2
√

n
−→ 0.
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71. Let ε > 0 be arbitrary. Since fn → f uniformly, some integer N exists such that

|fn(x)− f(x)| < ε for all x ∈ X and each n ≥ N .

Since each fn is uniformly continuous on X, there also exists some δn > 0 such that

d(x, y) < δn =⇒ |fn(x)− fn(y)| < ε for all x, y ∈ X.

If we now assume that d(x, y) < δN , then the triangle inequality ensures that

|f(x)− f(y)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− f(y)| < 3ε.

In particular, f is also uniformly continuous on X, as needed.

72. Let X be a discrete metric space and suppose that {xn} is a Cauchy sequence in X. Then
there exists an integer N such that

d(xm, xn) < 1 for all m,n ≥ N .

Since d is the discrete metric, this actually means that

xm = xn for all m,n ≥ N .

In particular, the given sequence converges to xN because

d(xn, xN) = 0 < ε for all n ≥ N and each ε > 0.

73. Let A,B be the two subsets and let xn be a Cauchy sequence in their union. Since each
term of the sequence lies in either A or B, one of these sets must contain infinitely many
terms. In particular, some subsequence xnk

lies entirely within either A or B. Since this
subsequence is also Cauchy, the completeness of A,B ensures that xnk

actually converges.
Being a Cauchy sequence with a convergent subsequence, the original sequence must then
converge as well.

74. Since every continuous function on a compact set is bounded, A is certainly contained in
the space X = B([0, 1],R). Moreover, the latter space is complete, so we need only show
that A is closed in it. Suppose that f ∈ Cl A and let fn ∈ A be a sequence of points in A
such that fn → f in the d∞-metric. Then fn → f uniformly, so the limit f is continuous.
This shows that f ∈ A itself, and it also establishes the desired inclusion Cl A ⊂ A.

75. Since every polynomial is continuous, A is certainly contained in the space C([0, 1]) of the
previous problem. Moreover, the latter space is complete, so we need only show that A is
not closed in it. Said differently, it suffices to find a sequence of polynomials fn ∈ A that
converge uniformly to a function f which is not a polynomial. Now, the polynomials

fn(x) = 1 + x +
x2

2!
+ . . . +

xn

n!
=

n∑

k=0

xk

k!

are known to converge uniformly to the exponential function f(x) = ex. In addition, this
function is not a polynomial because f ′ = f , whereas the derivative of any polynomial is
some other polynomial of lower degree.
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76. Given any points x, y in the unit interval (0, 1), one easily finds that

|x2 − y2| = |x + y| · |x− y| ≤ 2 · |x− y|.
In particular, one finds that f(x) = x2/3 is a contraction on (0, 1) because

|f(x)− f(y)| = |x2 − y2|
3

≤ 2

3
· |x− y|

for all x, y ∈ (0, 1) by above. To see that f fails to have a fixed point, we note that

f(x) = x =⇒ x2

3
= x =⇒ x = 0, 3 =⇒ x /∈ (0, 1).

Finally, this example does not violate Banach’s theorem because (0, 1) is not complete.

77. Since X is complete, it suffices to show that T is a contraction. Once we note that

|T (f)(x)− T (g)(x)| ≤
∫ x

0

|f(t)− g(t)| dt ≤ x · d∞(f, g)

for each 0 ≤ x ≤ 1/2, we may immediately deduce the desired

d∞(T (f), T (g)) ≤ 1

2
· d∞(f, g).

78. Being continuous on a compact set, f ′ is also bounded, say

|f ′(s)| ≤ K for all 0 ≤ s ≤ 1.

Using the fundamental theorem of calculus, we then find that

|f(x)− f(y)| =
∣∣∣∣
∫ x

y

f ′(s) ds

∣∣∣∣ ≤ K|x− y|.

79. Indeed, R is complete and the function f(x) = x2

1+x2 is continuous, yet the image

f(R) = [0, 1)

is not complete because it is not closed in R.

80. The sequence of open intervals An = (0, 1/n) is easily seen to be such.

81. The sequence of closed intervals Bn = [n,∞) is easily seen to be such.

82. Given an infinite discrete metric space X, one has

d(x, y) ≤ 1 for all x, y ∈ X

and this shows that X is bounded. On the other hand, X has no finite 1-net because

B1(x) = {y ∈ X : d(x, y) < 1} = {x},
so that finitely many balls of radius 1 may only cover finitely many elements of X.
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83. Suppose that f(xn) is a sequence in the image. Since X is totally bounded by assumption,
the sequence xn does have a Cauchy subsequence xnk

. According to Problem 69 then, the
corresponding subsequence f(xnk

) must also be Cauchy. This shows that every sequence
in f(X) has a Cauchy subsequence, which implies that f(X) is totally bounded.

84. Let ε = 1. Given any δ > 0, we can choose n large enough so that xn = 1/n satisfies

|xn − 0| = 1/n < δ.

Since we also have

|fn(xn)− fn(0)| = (n + 1/n)2 − n2 = 2 +
1

n2
> 2 > ε,

the sequence fn(x) is not equicontinuous at the origin.

85. Let ε = 1. Given any δ > 0, we can choose n large enough so that xn = π/n satisfies

|xn − 0| = π/n < δ.

Since we also have
|fn(xn)− fn(0)| = | cos π − cos 0| = 2 > ε,

the sequence fn(x) is not equicontinuous at the origin.

86. Since A1 = X is compact, its continuous image A2 = f(A1) is compact with

A2 = f(A1) = f(X) ⊂ X = A1.

Using the exact same argument, one finds that A3 = f(A2) is compact with

A2 ⊂ A1 =⇒ f(A2) ⊂ f(A1) =⇒ A3 ⊂ A2.

Thus, we may proceed in this manner to obtain a nested sequence of nonempty, compact
subsets of X. Being compact in the Hausdorff space X, these sets are all closed in X, so
their intersection A = A1 ∩A2 ∩ · · · is closed as well. Moreover, A is nonempty due to the
intersection property of compact spaces. Once we now note that the image

f(A) =
∞⋂

n=1

f(An) =
∞⋂

n=1

An+1 =
∞⋂

n=2

An

lies in X, we may conclude that

f(A) = f(A) ∩X = f(A) ∩ A1 =
∞⋂

n=1

An = A.

8



87a. Suppose that x ∈ Cl A and let xn ∈ A be such that xn → x. Then the inequality

ρ(x) = inf
z∈A

d(x, z) ≤ d(x, xn)

must hold for each n ≥ 1, so we may let n →∞ to deduce that

ρ(x) ≤ 0.

Since we also have ρ(x) ≥ 0 by definition, this actually implies that ρ(x) = 0.

• Suppose now that ρ(x) = 0. Given any positive integer n, we then have

inf
z∈A

d(x, z) = ρ(x) = 0 < 1/n,

so 1/n is not a lower bound for d(x, z). This means that some zn ∈ A is such that

d(x, zn) < 1/n.

Once we now note that zn → x by the last equation, we may conclude that x ∈ Cl A.

87b. Let x, y ∈ X be arbitrary. Given any z ∈ A, we must then have

ρ(x) ≤ d(x, z) ≤ d(x, y) + d(y, z)

by the triangle inequality. Taking the infimum over all z ∈ A, we thus find

ρ(x) ≤ d(x, y) + ρ(y) =⇒ ρ(x)− ρ(y) ≤ d(x, y).

Since the same argument applies to give ρ(y)− ρ(x) ≤ d(y, x), we actually have

|ρ(x)− ρ(y)| ≤ d(x, y).

88. Define the function T : C([0, 1]) → C([0, 1]) by the formula

T (f)(x) =

∫ x

0

(x− y) f(y) dy for each 0 ≤ x ≤ 1.

Then we have

|T (f)(x)− T (g)(x)| ≤
∫ x

0

(x− y) · |f(y)− g(y)| dy

≤ d∞(f, g)

∫ x

0

(x− y) dy

and we may use the substitution u = x− y to get
∫ x

0

(x− y) dy =

∫ x

0

u du =
x2

2
≤ 1

2
.

Once we now combine the last two equations, we arrive at

|T (f)(x)− T (g)(x)| ≤ 1

2
· d∞(f, g) =⇒ d∞(T (f), T (g)) ≤ 1

2
· d∞(f, g) .

This shows that T is a contraction, so T has a unique fixed point by Banach’s theorem.
Since the zero function is clearly a fixed point, there is no other fixed point, indeed.
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89. Suppose that f is not constant. Then there exists some a ∈ R such that

ε =
|f(a)− f(0)|

2

is positive. Given δ > 0, let us now choose n large enough so that xn = a/n satisfies

|xn − 0| = |a|/n < δ.

Since we also have
|fn(xn)− fn(0)| = |f(a)− f(0)| = 2ε > ε,

the sequence fn cannot be equicontinuous at the origin, as needed.

90. Note that the given sequence is bounded by a single constant, since

|Fn(x)| ≤
∫ x

0

|fn(s)| ds ≤
∫ x

0

ds = x ≤ 1

for all 0 ≤ x ≤ 1 and each n ≥ 1. In addition, the inequality

|Fn(x)− Fn(y)| =
∣∣∣∣
∫ x

y

fn(s) ds

∣∣∣∣ ≤ |x− y|

implies that the sequence Fn is equicontinuous, as it certainly implies that

|x− y| < ε =⇒ |Fn(x)− Fn(y)| ≤ |x− y| < ε.

In view of the corollary to the Arzela-Ascoli theorem, this also completes the proof.

91. Since the sequence fn is equicontinuous on a compact set, it is uniformly equicontinuous.
Given ε > 0, we may thus find some δ > 0 such that

d(x, y) < δ =⇒ |fn(x)− fn(y)| < ε for all x, y ∈ X and each n ≥ 1.

Since X is compact, X is totally bounded as well, so it has a finite δ-net, say y1, . . . , yj.
By assumption, the sequence fn(yi) converges to f(yi) for each i, so this sequence is also
Cauchy for each i. In particular, we can always find an integer Ni such that

|fn(yi)− fm(yi)| < ε for all m,n ≥ Ni.

Letting N denote the maximum of the finitely many Ni’s, we thus arrive at

|fn(yi)− fm(yi)| < ε for all m,n ≥ N and each 1 ≤ i ≤ j.

Suppose now that x ∈ X is arbitrary. Since d(x, yi) < δ for some i, we also have

|fn(x)− fm(x)| ≤ |fn(x)− fn(yi)|+ |fn(yi)− fm(yi)|+ |fm(yi)− fm(x)| < 3ε

for all m,n ≥ N by above. This shows that the sequence fn is uniformly Cauchy, which
also implies it is uniformly convergent.
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92. Fix some ε > 0. Since fn → f uniformly, some integer N exists such that

|fn(x)− f(x)| < ε for all 0 ≤ x ≤ 1 and each n ≥ N .

As long as n ≥ N , in particular, we must also have

∣∣∣∣
∫ 1

0

fn(x) dx−
∫ 1

0

f(x) dx

∣∣∣∣ =

∣∣∣∣
∫ 1

0

[fn(x)− f(x)] dx

∣∣∣∣ <

∫ 1

0

ε dx = ε.

93. Let ε = 1/2. Given any δ > 0, we can choose n large enough so that xn = 1/n satisfies

|xn − 0| = 1/n < δ.

Since we also have
|fn(xn)− fn(0)| = |1− 0| > ε,

the functions fn do not form an equicontinuous family at the origin.

94. To see that F is closed, suppose f ∈ Cl F and let fn ∈ F be such that fn → f uniformly.
Then f is the uniform limit of continuous functions, hence also continuous. Moreover,

|fn(x)− fn(y)| ≤ |x− y| for all 0 ≤ x, y ≤ 1

so we can let n →∞ to find that

|f(x)− f(y)| ≤ |x− y| for all 0 ≤ x, y ≤ 1.

And since fn(0) = 0 for all n, we must similarly have f(0) = 0 as well.

• To see that F is bounded, we note that each f ∈ F is such that

|f(x)− f(0)| ≤ |x− 0| =⇒ |f(x)| ≤ |x| ≤ 1 for all 0 ≤ x ≤ 1.

• To see that F is equicontinuous, we let ε > 0 be arbitrary and note that

|x− y| < ε =⇒ |f(x)− f(y)| ≤ |x− y| < ε for all f ∈ F .

Since F is closed, bounded and equicontinuous, it is also compact by Arzela-Ascoli.
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