
Maths 212: Homework Solutions

1. The definition of A ensures that x ≤ π for all x ∈ A, so π is an upper bound of A. To
show it is the least upper bound, suppose x∗ < π and consider two cases.

• If x∗ < 1, then x∗ cannot be an upper bound of A because 1 ∈ A.

• If 1 ≤ x∗ < π, then we can choose a rational y with x∗ < y < π, and x∗ cannot be an
upper bound of A because y ∈ A.

Since no real number x∗ < π can be an upper bound of A, we deduce that sup A = π.

2. Since A is bounded by assumption, both inf A and sup A exist. Moreover, we have

inf A ≤ x ≤ sup A for all x ∈ A.

Since the elements of B are also elements of A, this actually implies

inf A ≤ x ≤ sup A for all x ∈ B.

Now, the last equation makes sup A an upper bound of B, while sup B is the least upper
bound of B. In particular, it must be the case that sup A ≥ sup B. Similarly, inf A is a
lower bound of B by above, so it must be the case that inf A ≤ inf B.

3. Step 1. Using induction on n, one can easily show that sn > 0 for all n.

Step 2. We claim that sn <
√

2 for all n. This is the case when n = 1 because s1 = 1.
Suppose it is the case for some n. Since sn is positive by Step 1, we then have

sn+1 <
√

2 ⇐⇒ 2sn + 2 < (sn + 2)
√

2

⇐⇒ (2−
√

2 )sn < 2
√

2− 2 = (2−
√

2 )
√

2

⇐⇒ sn <
√

2.

As the last inequality holds by the induction hypothesis, the first one does as well.

Step 3. We show that {sn} is increasing. Since sn is positive by Step 1, we have

sn+1 > sn ⇐⇒ 2sn + 2 > (sn + 2)sn = s2
n + 2sn

⇐⇒ 2 > s2
n

⇐⇒
√

2 > sn.

As the last inequality holds by Step 2, the first one does as well.

Step 4. We already know by above that {sn} is increasing and bounded. This implies
that the given sequence is convergent. Once we now denote the limit by L, we find

sn+1 =
2sn + 2

sn + 2
=⇒ L =

2L + 2

L + 2
=⇒ L2 + 2L = 2L + 2.

Since the limit of a non-negative sequence is also non-negative, this actually gives

L2 + 2L = 2L + 2 =⇒ L2 = 2 =⇒ L =
√

2.
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4. Set ε = L− L′. Then ε > 0, so there exists an integer N such that

|sn − L| < ε = L− L′ for all n ≥ N .

Since this implies

L− sn ≤ |L− sn| < L− L′ for all n ≥ N ,

we deduce that
sn > L′ for all n ≥ N .

5. Let ε > 0 be arbitrary. Since an → L, there exists an integer N1 such that

|an − L| < ε for all n ≥ N1.

Rewrite the last equation in the form

L− ε < an < L + ε for all n ≥ N1.

Since cn → L, a similar argument gives us an integer N2 such that

L− ε < cn < L + ε for all n ≥ N2.

Letting N = max(N1, N2), we now find

L− ε < an ≤ bn ≤ cn < L + ε =⇒ |bn − L| < ε

for all n ≥ N . Since ε > 0 was arbitrary, this actually shows that bn → L.

6. Let ε > 0 be arbitrary. Since the given sequence is convergent, it is also Cauchy. Thus,
there exists an integer N such that

|sm − sn| < ε for all m,n ≥ N .

Taking m = n + 1, as we may, we now find

|sn+1 − sn| < ε for all n ≥ N .

Since ε > 0 was arbitrary, this actually shows that sn+1 − sn → 0.

7. Let x be a real number and let {xn} be a sequence with xn → x. When it comes to the
rational terms of the sequence, we have f(xn) = xn → x. When it comes to the irrational
ones, we have f(xn) = 0. In order for f to be continuous at x, these two quantities must
agree with one another and they must also agree with f(x). In particular, the point x = 0
is the only point at which f is continuous.
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8. First, we check property (M1). Since d(x, y) ≥ 0 and since 1 > 0, we have

d0(x, y) = min{1, d(x, y)} ≥ 0

as well. Moreover, the fact that 1 6= 0 implies

d0(x, y) = 0 ⇐⇒ d(x, y) = 0 ⇐⇒ x = y

because d is a metric. Next, we prove property (M2). Since d is a metric, we have

d0(y, x) = min{1, d(y, x)} = min{1, d(x, y)} = d0(x, y).

Finally, we check property (M3). Given points x, y, z ∈ X, we have to check that

min{1, d(x, z)} ≤ min{1, d(x, y)}+ min{1, d(y, z)}.

If either d(x, y) ≥ 1 or d(y, z) ≥ 1, this inequality holds because the left hand side is at
most 1 and the right hand side is at least 1. Otherwise, d(x, y) < 1 and d(y, z) < 1, so the
triangle inequality for d gives

min{1, d(x, z)} ≤ d(x, z) ≤ d(x, y) + d(y, z)

= min{1, d(x, y)}+ min{1, d(y, z)}.

9. First, we check property (M1). Since d((x1, y1), (x2, y2)) is defined as the square root of a
certain expression, it is certainly non-negative. Moreover, we have

d((x1, y1), (x2, y2)) = 0 ⇐⇒ d1(x1, x2)
2 + d2(y1, y2)

2 = 0

⇐⇒ x1 = x2 and y1 = y2

⇐⇒ (x1, y1) = (x2, y2).

Next, we check property (M2). Since d1 and d2 are known to be metrics, we have

d((x2, y2), (x1, y1)) =
√

d1(x2, x1)2 + d2(y2, y1)2

=
√

d1(x1, x2)2 + d2(y1, y2)2

= d((x1, y1), (x2, y2)).

Finally, we check property (M3). For ease of notation, it is convenient to set

A1 = d1(x1, x2), B1 = d1(x2, x3), C1 = d1(x1, x3),

A2 = d2(y1, y2), B2 = d2(y2, y3), C2 = d2(y1, y3).

Then the triangle inequality for di implies that

Ci ≤ Ai + Bi =⇒ C2
i ≤ A2

i + B2
i + 2AiBi

3



for i = 1, 2. Adding these inequalities and using Cauchy-Schwarz, we then get

C2
1 + C2

2 ≤ A2
1 + A2

2 + B2
1 + B2

2 + 2
2∑

i=1

AiBi

≤ A2
1 + A2

2 + B2
1 + B2

2 + 2
√

A2
1 + A2

2

√
B2

1 + B2
2 .

Once we now take square roots of both sides, we arrive at

√
C2

1 + C2
2 ≤

√
A2

1 + A2
2 +

√
B2

1 + B2
2 .

Since this is precisely the desired triangle inequality for d, the proof is complete.

10. Suppose there is an element z ∈ Br/2(x) ∩Br/2(y). Then that element satisfies

d(x, z) <
r

2
, d(y, z) <

r

2
.

According to the triangle inequality, we must thus have

r = d(x, y) ≤ d(x, z) + d(z, y) <
r

2
+

r

2
= r.

Since this is a contradiction, however, we deduce that Br/2(x) ∩Br/2(y) = ∅.

11. Pick an element y ∈ U . Then ε = d(x, y)− r is positive. We claim that Bε(y) is an open
ball around y that lies entirely within U . Indeed, we have

z ∈ Bε(y) =⇒ d(z, y) < ε

=⇒ d(x, y) ≤ d(x, z) + d(z, y) < d(x, z) + ε

=⇒ d(x, z) > d(x, y)− ε = r

=⇒ z ∈ U.

12. The open ball B1((0, 0)) consists of all points (x1, x2) with

d∞((x1, x2), (0, 0)) = max {|x1|, |x2|} < 1.

These are precisely the points with |x1| < 1 and |x2| < 1. In particular, the desired open
ball is the interior of a square whose vertices are located at (± 1, 1) and (± 1,−1).

13. Let S be a subset of a discrete metric space X and pick some s ∈ S. Then B1(s) is an
open ball around s that lies entirely within S because B1(s) = {s} ⊂ S.

14. First of all, it is clear that

max{|x1 − y1|, |x2 − y2|}2 ≤ |x1 − y1|2 + |x2 − y2|2;
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taking square roots of both sides, we then find

d∞((x1, x2), (y1, y2)) ≤ d2((x1, x2), (y1, y2)).

Also, it is easy to establish the inequality

|x1 − y1|2 + |x2 − y2|2 ≤
(
|x1 − y1|+ |x2 − y2|

)2

by expanding the right hand side; this gives

d2((x1, x2), (y1, y2)) ≤ d1((x1, x2), (y1, y2)).

Finally, we have

|x1 − y1| ≤ max{|x1 − y1|, |x2 − y2|},
|x2 − y2| ≤ max{|x1 − y1|, |x2 − y2|}.

Adding these two inequalities, we then find

d1((x1, x2), (y1, y2)) ≤ 2 · d∞((x1, x2), (y1, y2)).

Since d∞ ≤ d2 ≤ d1 ≤ 2 · d∞ by above, all these metrics are Lipschitz equivalent.

15i. The set U = [0, 2) is not open in R with the usual metric.

15ii. The set U = [0, 2) is open in [0, 3] because U = (−2, 2) ∩ [0, 3].

15iii. The set U = {0, 2} is not open in R with the usual metric.

15iv. In a discrete metric space, all sets are open.

16. Suppose U is open in Z. Then g−1(U) is open in Y , so f−1(g−1(U)) is open in X. On the
other hand, it is easy to see that

f−1(g−1(U)) = {x ∈ X : f(x) ∈ g−1(U)} = {x ∈ X : g(f(x)) ∈ U}
= (g ◦ f)−1(U).

Since this set is open in X by above, we deduce that g ◦ f is continuous.

17. Suppose U is open in Y and consider two cases.

• If y0 ∈ U , then f−1(U) is the whole space X, which is open in X.

• If y0 /∈ U , then f−1(U) is the empty set, which is open in X as well.

In any case then, f−1(U) is open in X, so f is continuous.
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18. Suppose U is a union of open balls. Then U is a union of open sets, hence also open.

Conversely, suppose that U is open. For each element x ∈ U , we can then find an open
ball Bε(x) which lies entirely within U . Since this implies

U =
⋃
x∈U

{x} ⊂
⋃
x∈U

Bε(x) ⊂ U,

the sets appearing above must all be equal. In particular, U is a union of open balls.

19. Pick an element (x1, x2) ∈ S. Our goal is to find an open ball Bε((x1, x2)) that lies entirely
within S. We claim that such an open ball is provided for the choice

ε = min
i=1,2

{xi, 1− xi}.

Note that ε is positive because

(x1, x2) ∈ S =⇒ 0 < xi < 1 for i = 1, 2

=⇒ 0 < 1− xi < 1 for i = 1, 2.

Now, let (y1, y2) ∈ Bε((x1, x2)) be arbitrary. Then we have

[
2∑

i=1

|yi − xi|2
]1/2

< ε =⇒
2∑

i=1

|yi − xi|2 < ε2,

so we also have

|yi − xi|2 ≤
2∑

i=1

|yi − xi|2 < ε2 =⇒ |yi − xi| < ε

for i = 1, 2. In view of the definition of ε, this actually implies that

0 ≤ xi − ε < yi < xi + ε ≤ 1 =⇒ 0 < yi < 1

for i = 1, 2. In particular, it implies that (y1, y2) ∈ S, as needed.

20. Suppose U is open in Y and consider its inverse image

f |−1
A (U) = {x ∈ A : f |A(x) ∈ U} = {x ∈ A : f(x) ∈ U}

= {x ∈ A : x ∈ f−1(U)} = f−1(U) ∩ A.

Since f−1(U) is open in X, we see that f |−1
A (U) is open in A. Thus, f |A is continuous.

21. Suppose U is open in Y and consider its inverse image

i−1(U) = {x ∈ X : i(x) ∈ U} = {x ∈ X : x ∈ U} = U ∩X.

Since U is open in Y , we see that i−1(U) is open in X. Thus, i is continuous.
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22a. To check property (B1), it suffices to note that

R =
∞⋃

n=1

(−∞, n)

is a union of elements of B. To check property (B2), it suffices to note that

(−∞, a) ∩ (−∞, b) = (−∞, min(a, b)) ∈ B.

22b. Let B = (−∞, a) be a basis element for the given topology and let x ∈ B. Since

x ∈ (x− 1, a) ⊂ B,

the usual topology on R is finer.

23a. Suppose X has the discrete topology and let U be open in Y . The inverse image of U is
then a subset of X, so it is automatically open in X. This shows that f is continuous.

23b. Suppose Y has the indiscrete topology. The only open sets in Y are then the empty set
and the whole space Y . The inverse image of the former is the empty set and this is open
in X. The inverse image of the latter is X and this is open in X as well.

24. Take an element of the subspace topology, say U ∩ Y , where U is open in X. Since BX is
a basis for the topology on X, we can write U as a union of elements of BX . This gives

U =
⋃

Bα =⇒ U ∩ Y =
(⋃

Bα

)
∩ Y =

⋃
(Bα ∩ Y ),

whence U ∩ Y is a union of elements of BY , as needed.

25. Note that the given set is merely the unit interval (0, 1) with the points 1/2, 1/3, 1/4, . . .
removed. It is easy to see that we can express this set in the form

A =
∞⋃

n=1

(
1

n + 1
,
1

n

)
.

Being the union of open intervals, A must thus be open itself.

26. Suppose that U is open in Y . Then we can write U as a union of elements Bα ∈ BY . As
the inverse image of each Bα is open in X by assumption, we see that

f−1(U) = f−1
(⋃

Bα

)
=

⋃
f−1(Bα)

is open in X as well. This shows that f is continuous.
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27. Let Tu and Tp denote the usual and product topology on R2, respectively.

I First, we show that Tu ⊃ Tp. Suppose that (x1, x2) ∈ (a1, b1)× (a2, b2) and let

ε = min
i=1,2

{xi − ai, bi − xi}.

Then ε > 0 and so the open ball Bε((x1, x2)) is a basis element for the usual topology. In
addition, we have

(y1, y2) ∈ Bε((x1, x2)) =⇒ (x1 − y1)
2 + (x2 − y2)

2 < ε2

=⇒ ai ≤ xi − ε < yi < xi + ε ≤ bi for i = 1, 2

=⇒ (y1, y2) ∈ (a1, b1)× (a2, b2).

Since this implies that Bε((x1, x2)) ⊂ (a1, b1)× (a2, b2), we conclude that Tu ⊃ Tp.

I Next, we show that Tp ⊃ Tu. Suppose that (x1, x2) ∈ Bε((a1, a2)) and note that

δ =
1√
2


ε−

√√√√
2∑

i=1

|xi − ai|2



is positive. A basis element for the product topology on R2 is then

U = (x1 − δ, x1 + δ)× (x2 − δ, x2 + δ)

and it suffices to show that U ⊂ Bε((a1, a2)). Now, given some (y1, y2) ∈ U , we have

|yi − xi| < δ =⇒ |yi − ai| ≤ |yi − xi|+ |xi − ai| < δ + |xi − ai|
for i = 1, 2. Squaring both sides of this inequality and summing, we then find

2∑
i=1

|yi − ai|2 <

2∑
i=1

δ2 +
2∑

i=1

|xi − ai|2 + 2
2∑

i=1

δ |xi − ai|.

In view of the Cauchy-Schwarz inequality, this also gives

2∑
i=1

|yi − ai|2 <

2∑
i=1

δ2 +
2∑

i=1

|xi − ai|2 + 2

√√√√
2∑

i=1

δ2

√√√√
2∑

i=1

|xi − ai|2.

Once we now note that the right hand side is a perfect square, we arrive at

√√√√
2∑

i=1

|yi − ai|2 <

√√√√
2∑

i=1

δ2 +

√√√√
2∑

i=1

|xi − ai|2 = ε.

Since this implies that U ⊂ Bε((a1, a2)), we conclude that Tp ⊃ Tu.
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28. Since the open intervals (a, b) form a basis for the usual topology on R, it suffices to check
that the inverse image

d−1((a, b)) = {(x, y) ∈ X ×X : a < d(x, y) < b}

is open in X ×X whenever a < b. Pick some (x, y) ∈ d−1((a, b)) and set

ε = min
{

d(x, y)− a, b− d(x, y)
}

.

Then ε > 0 and it suffices to check that Bε/2(x) × Bε/2(y) ⊂ d−1((a, b)). Suppose then
that x′ ∈ Bε/2(x) and y′ ∈ Bε/2(y). According to the triangle inequality, we have

d(x′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′)

< ε/2 + d(x, y) + ε/2 = d(x, y) + ε ≤ b

as well as

a + ε ≤ d(x, y) ≤ d(x, x′) + d(x′, y′) + d(y′, y)

< ε/2 + d(x′, y′) + ε/2 = d(x′, y′) + ε.

This shows that a < d(x′, y′) < b, hence also (x′, y′) ∈ d−1((a, b)), as needed.

29. Define a function f : X × Y → Y ×X by the formula f(x, y) = (y, x). Then f is clearly
bijective and equal to its inverse. To check that f is a homeomorphism, it suffices to check
continuity. Suppose U is open in X and V is open in Y . Then V × U is one of the basis
elements in the product topology of Y ×X, while

f−1(V × U) = {(x, y) ∈ X × Y : f(x, y) ∈ V × U}
= {(x, y) ∈ X × Y : (y, x) ∈ V × U} = U × V.

This shows that the inverse image of each basis element is open. Thus, f is continuous.

30a. We have Int A = ∅ and Cl A = R× [0,∞).

30b. We have Int B = B and Cl B = R2.

31. If x ∈ Cl A, then every neighbourhood of x intersects A, hence every neighbourhood of x
intersects the larger set B. This proves the desired inclusion Cl A ⊂ Cl B.

32. Since the closures Cl A and Cl(X − A) are known to be closed, their intersection

Bd A = Cl A ∩ Cl(X − A)

must be closed as well.

9



33. Let A = {a1, . . . , an} be a finite subset of a metric space X and let x ∈ X be arbitrary.

• In the case that x /∈ A, we can set

ε = min{d(x, a1), . . . , d(x, an)}
to obtain an open ball Bε(x) around x that does not intersect A at all.

• In the case that x ∈ A, we have x = ai for some i, so we can take

ε = min
j 6=i

d(ai, aj)

to obtain an open ball Bε(x) that intersects A only at the point x = ai.

In either case then, there exists some neighbourhood of x which fails to intersect A at a
point other than x. This means that no point x ∈ X can be a limit point of A.

I To see that A is closed, we note that Cl A is the union of A and its limit points. Since A
has no limit points by above, this gives Cl A = A and so A is closed.

34. One such subset is Q because

Int(ClQ) = IntR = R, Cl(IntQ) = Cl∅ = ∅.

Another such subset is A = (0, 1) ∪ (1, 2) because

Int(Cl A) = Int[0, 2] = (0, 2), Cl(Int A) = Cl A = [0, 2].

35. First, suppose that f is continuous and let A ⊂ X. Then Cl f(A) is closed in Y , so the
inverse image of this set is closed in X. In addition, we have

A ⊂ f−1(f(A)) ⊂ f−1(Cl f(A)),

so f−1(Cl f(A)) is actually a closed set containing A. Since Cl A is the smallest closed set
with this property, we conclude that Cl A ⊂ f−1(Cl f(A)).

I Next, suppose that Cl A ⊂ f−1(Cl f(A)) for each A ⊂ X and assume U is closed in Y .
Then A = f−1(U) is a subset of X, so it must be the case that

Cl f−1(U) ⊂ f−1(Cl U) = f−1(U) ⊂ Cl f−1(U).

In particular, all these sets must be equal and so f−1(U) = Cl f−1(U) is closed in X.

36. To see that Int A ∩ Bd A = ∅, we note that

x ∈ Int A =⇒ some neighbourhood of x lies entirely within A

=⇒ some neighbourhood of x fails to intersect X − A

=⇒ x /∈ Cl(X − A)

=⇒ x /∈ Bd A.
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37. To establish the inclusion Int A ∪ Bd A ⊂ Cl A, we need only note that

Int A ⊂ A ⊂ Cl A, Bd A = Cl A ∩ Cl(X − A) ⊂ Cl A.

To establish the reverse inclusion, suppose that x ∈ Cl A. Then every neighbourhood of x
must intersect A and we consider two cases.

• If some neighbourhood of x intersects A but not its complement X − A, then that
neighbourhood lies entirely within A, so x is in the interior of A by definition.

• If every neighbourhood of x intersects both A and its complement X − A, then x is
in the boundary of A by definition.

In either case then, the inclusion Cl A ⊂ Int A ∪ Bd A follows.

38. To see that X − Cl A = Int(X − A), we note that

x /∈ Cl A ⇐⇒ some neighbourhood of x fails to intersect A

⇐⇒ some neighbourhood of x lies entirely within X − A

⇐⇒ x ∈ Int(X − A).

39. If A is compact, then A is compact in a Hausdorff space, hence also closed. If A is closed,
then A is closed in a compact space, hence also compact.

40. Let n be a positive integer. Being smaller than the least upper bound, sup A− 1/n is not
an upper bound of A. In particular, there exists some xn ∈ A such that

sup A− 1

n
< xn ≤ sup A.

• If equality happens to hold for some n, then sup A = xn is a point of A.

• If strict inequality holds for all n, then we have a sequence {xn} of points in A such
that xn → sup A, yet xn 6= sup A for all n. This makes sup A a limit point of A.

Since sup A is either a point of A or a limit point of A, we deduce that sup A ∈ Cl A.

I Suppose now that B ⊂ R is compact. By the Heine-Borel theorem, B is then closed and
bounded. Since B is bounded, its closure must contain sup B by above. Since B is closed,
however, it is equal to its own closure. This means that B must contain its supremum.

41. Given any point y ∈ A, we have x 6= y. Since X is Hausdorff, we may thus find disjoint
open sets U(y) and V (y) containing y and x, respectively. Since the sets U(y) form an
open cover of A, finitely many of them do. Say A ⊂ U(y1) ∪ · · · ∪ U(yn) and let

U = U(y1) ∪ · · · ∪ U(yn), V = V (y1) ∩ · · · ∩ V (yn).
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Then U and V are open sets containing A and x, respectively. Moreover, we have

z ∈ U =⇒ z ∈ U(yi) for some i

=⇒ z /∈ V (yi) for some i

=⇒ z /∈ V.

In particular, U and V are also disjoint, as needed.

42. Given any point x ∈ B, we have x ∈ X −A and so the previous problem allows us to find
disjoint open sets U(x) and V (x) containing A and x, respectively. Since the sets V (x)
form an open cover of B, finitely many of them do. Say B ⊂ V (x1) ∪ · · · ∪ V (xn) and let

U = U(x1) ∩ · · · ∩ U(xn), V = V (x1) ∪ · · · ∪ V (xn).

Then U and V are open sets containing A and B, respectively. Moreover, we have

z ∈ U =⇒ z ∈ U(xi) for each i

=⇒ z /∈ V (xi) for each i

=⇒ z /∈ V.

In particular, U and V are also disjoint, as needed.

43. Suppose that U is closed in X. Being closed in a compact space, U is then compact. We
know that the continuous image of a compact set is compact; so f(U) is compact as well.
Being compact in a Hausdorff space, f(U) must then be closed.

44. Being compact in a Hausdorff space, A is closed in X. This makes A ∩ B closed in B by
the definition of the subspace topology. Being closed in a compact space, A ∩ B is then
compact itself.

45. Suppose the intersection of the Ci’s is empty. According to De Morgan’s law then,

∞⋃
i=1

(X − Ci) = X −
∞⋂
i=1

Ci = X,

so the sets X − Ci form an open cover of X. By compactness, finitely many of these sets
must cover X; suppose the first n do. Using De Morgan’s law, we now find

X − Cn = X −
n⋂

i=1

Ci =
n⋃

i=1

(X − Ci) = X,

which is impossible since Cn 6= ∅. Thus, the intersection of the Ci’s cannot be empty.

46. Being continuous, the restriction g : [a, b] → R does have the intermediate value property.
Moreover, g(a) and g(b) have opposite signs by assumption; namely, one of them is positive
and the other one is negative. This also implies that g(c) = 0 for some c ∈ (a, b).
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47. Note that a ≤ g(a) and g(b) ≤ b by assumption. If either of these inequalities happens to
be an equality, the result follows trivially. Suppose now that a < g(a) and g(b) < b. Then
the function f(x) = g(x)− x is continuous with

f(a) = g(a)− a > 0, f(b) = g(b)− b < 0.

By the intermediate value property, there must exist some c ∈ (a, b) such that f(c) = 0.
Since this actually implies that g(c) = c, the proof is complete.

48. Suppose A is a finite subset of R2 and let x, y be points in the complement of A. Since
there are infinitely many lines passing through x, we can always find a line through x that
fails to intersect A. Now, follow this line until you reach a point z and then follow the
straight line from z to y. Since there are infinitely many points z at which you can stop
before making a turn, one of the resulting paths fails to intersect A. That would also be
a path from x to y which lies entirely in the complement of A.

49a. Not compact; not connected; not path-connected.

49b. Not compact; connected; path-connected.

49c. Compact; connected; path-connected.

50. First, we use induction to show that the union Bn = A1 ∪ · · · ∪ An of the first n sets
is connected. When n = 1, we have B1 = A1 and this set is connected by assumption.
Suppose now that Bn is connected for some n. Since Bn contains An, it must have a point
in common with An+1. Since Bn and An+1 are both connected, their union Bn+1 is thus
connected as well. In particular, all the Bn’s are connected by induction.

I Next, we note that the Bn’s have a point in common because they all contain A1. This
means that their union must also be connected. Since the union of the Bn’s coincides with
the union of the An’s, the proof is complete.

51. Being restrictions of continuous maps, both f̃ and its inverse are continuous. As they are
also bijective, we conclude that f̃ is a homeomorphism.

I Suppose now that we have a homeomorphism f : R→ R2. Then the restriction

f̃ : R− {0} → R2 − {f(0)}
is a homeomorphism as well. Note that the domain is not path-connected, as it is not
even connected. On the other hand, the image is path-connected in view of Problem 48.
Since this is a contradiction, no homeomorphism exists between R and R2.

52. Suppose that X is path-connected and f : X → Y is continuous. Let f(x0), f(x1) be any
two points in the image. We know there exists a path γ : [0, 1] → X with

γ(0) = x0, γ(1) = x1.

Since f is continuous, the composition f ◦ γ : [0, 1] → Y is then a path with

(f ◦ γ)(0) = f(x0), (f ◦ γ)(1) = f(x1).
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53a. As we already know, the closure of a connected set is always connected. This is one of the
two “marginally useful” facts: the inclusion of limit points does not ruin connectedness.

53b. The boundary of a connected set does not have to be connected. For instance, [0, 1] is
connected because it is an interval, yet its boundary {0, 1} is not connected because it is
not an interval.

53c. The interior of a connected set does not have to be connected; see Problem 49.

54. Suppose C|D is a partition of Y ∪ A. Being a connected subset of this partition, Y must
then lie within either C or D. Assume Y ⊂ C without loss of generality. Then it must be
the case that D ⊂ A, since

x ∈ D =⇒ x ∈ Y ∪ A yet x /∈ C

=⇒ x ∈ Y ∪ A yet x /∈ Y

=⇒ x ∈ A.

Now, consider the sets B ∪ C and D. These are nonempty, disjoint and their union is

B ∪ C ∪D = B ∪ A ∪ Y = (X − Y ) ∪ Y = X.

If we can also show that they are open in X, then B ∪ C|D would be a partition of X.
This would violate the connectedness of X and would also complete the proof.

I To check that B ∪ C is open, it suffices to check that its complement D is closed. Thus,
it suffices to check that Cl D = D. Using the properties of closures, we get

D ⊂ A =⇒ Cl D ⊂ Cl A.

Besides, one of the “marginally useful” facts suggests that Cl A does not intersect B, so

Cl D ⊂ Cl A ⊂ X −B = C ∪D.

Since the very same fact ensures that Cl D does not intersect C, this actually implies

Cl D ⊂ D.

As the reverse inclusion D ⊂ Cl D is always true, we deduce that Cl D = D.

I To check that D is open, we similarly check that Cl(B ∪ C) = B ∪ C. In this case,

Cl(B ∪ C) = Cl B ∪ Cl C ⊂ (X − A) ∪ (X −D)

because Cl B fails to intersect A and Cl C fails to intersect D. Thus, we have

Cl(B ∪ C) ⊂ (B ∪ Y ) ∪ (B ∪ C) ⊂ B ∪ C

because Y ⊂ C by above. Once again, this implies Cl(B ∪ C) = B ∪ C, as needed.
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