Maths 212, Homework #8 First four problems:

due Thursday, Jan. 19

- 55. Show that the continuous image of a Hausdorff, limit point compact topological space is limit point compact itself.
- 56. Suppose that X is a limit point compact topological space and let $Y \subset X$ be closed in X. Show that Y is limit point compact itself.
- 57. Let X denote the complement of the unit circle in \mathbb{R}^2 . Show that there is no path

$$\gamma \colon [0,1] \to X$$

between a point (x_0, y_0) in the interior of the circle and a point (x_1, y_1) in the exterior.

58. Given an arbitrary metric space X, it is clear that the collection of open balls

$$\mathcal{U} = \{B_1(x) : x \in X\}$$

forms an open cover of X. Find a Lebesgue number for this open cover.

- 59. A topological space X is called *countably compact* if every countable open cover of X has a finite subcover. Show that every sequentially compact space is countably compact.
- 60. Show that every countably compact topological space is limit point compact.
- 61. Find a countably compact metric space which is not compact.
- 62. Define a relation \sim between points of a topological space X by the formula

 $x \sim y \iff x, y$ lie in some connected subset of X.

Show that \sim is an equivalence relation and that each equivalence class (component) of X is necessarily connected.