Maths 212, Homework #7

To be discussed in class: Thursday, Dec. 8

46. (Bolzano's theorem) Suppose that $f \colon \mathbb{R} \to \mathbb{R}$ is continuous with

 $f(a) \cdot f(b) < 0$ for some real numbers a < b.

Show that there exists a real number $c \in (a, b)$ such that f(c) = 0.

- 47. (Fixed point theorem) Suppose that $g: [a, b] \to [a, b]$ is continuous. Show that there exists a real number $c \in [a, b]$ such that g(c) = c.
- 48. Show that the complement of a finite subset of \mathbb{R}^2 is path-connected.
- 49. Which of the following subsets of \mathbb{R}^2 are compact? connected? path-connected?
 - (a) $B_1((-1,0)) \cup B_1((1,0))$
 - (b) $B_1((-1,0)) \cup \operatorname{Cl}(B_1((1,0)))$
 - (c) $\operatorname{Cl}(B_1((-1,0))) \cup \operatorname{Cl}(B_1((1,0)))$
- 50. Suppose A_1, A_2, \ldots are connected subsets of a topological space X such that

$$A_n \cap A_{n+1} \neq \emptyset$$

for each integer $n \ge 1$. Show that the union of these sets is also connected.

51. Given a homeomorphism $f: X \to Y$ and a point $x \in X$, show that the restriction

$$\widetilde{f} \colon X - \{x\} \to Y - \{f(x)\}$$

is also a homeomorphism. Using this fact, show that \mathbb{R} is not homeomorphic to \mathbb{R}^2 .

- 52. Show that the continuous image of a path-connected space is path-connected itself.
- 53. Suppose A is a connected subset of a topological space X. Does the closure of A have to be connected as well? How about the boundary? How about the interior?
- 54. Suppose $Y \subset X$ are both connected and A|B is a partition of X Y. Show that $Y \cup A$ is connected as well.