Maths 212, Homework #5 First four problems: due Thursday, Nov. 24

30. Find the interior and closure of the following subsets of \mathbb{R}^2 (with the usual topology). You need not justify your answers.

(a) $A = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Q}, y > 0\}$ (b) $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \neq 4x\}$

- 31. Given a topological space X, show that $\operatorname{Cl} A \subset \operatorname{Cl} B$ whenever $A \subset B \subset X$.
- 32. Given a topological space X, show that $\operatorname{Bd} A$ is closed in X for each $A \subset X$.
- 33. Show that a finite subset of a metric space has no limit points. Use this fact to conclude that every finite subset of a metric space X is closed in X.
- 34. Find a subset A of \mathbb{R} (with its usual topology) such that $Int(ClA) \neq Cl(IntA)$.
- 35. Show that a function $f \colon X \to Y$ between topological spaces is continuous if and only if

 $f(\operatorname{Cl} A) \subset \operatorname{Cl} f(A)$ for each $A \subset X$.

As a hint, you might want to rewrite the last equation in the form

 $\operatorname{Cl} A \subset f^{-1}(\operatorname{Cl} f(A))$ for each $A \subset X$.

- 36. Given a topological space X, show that $\operatorname{Int} A \cap \operatorname{Bd} A = \emptyset$ for each $A \subset X$.
- 37. Given a topological space X, show that $\operatorname{Int} A \cup \operatorname{Bd} A = \operatorname{Cl} A$ for each $A \subset X$.