Maths 212, Homework #17

First three problems: due Thursday, Apr. 20

125. Define an equivalence relation on the plane $X = \mathbb{R}^2$ by setting

$$(x_1, y_1) \sim (x_2, y_2) \iff x_1^2 + y_1^2 = x_2^2 + y_2^2.$$

Show that the quotient space $\overline{X} = X/\sim$ is homeomorphic to $[0, \infty)$.

- 126. Show that the composition of two quotient maps is a quotient map itself.
- 127. Let $X = B^2$ be the unit disc and consider the equivalence relation ~ which identifies all points on the boundary. What is the quotient space $\overline{X} = X/\sim$ homeomorphic to?
- 128. Give a formal proof that justifies your answer in the previous problem.
- 129. Define an equivalence relation on $X = \mathbb{R}$ by setting

$$x \sim y \iff x = \lambda y$$
 for some $\lambda > 0$.

Show that the quotient space $\overline{X} = X/\sim$ is not Hausdorff.

- 130. Show that every retraction is a quotient map.
- 131. Define an equivalence relation on $X = S^2$ by setting

$$(x_1, y_1, z_1) \sim (x_2, y_2, z_2) \iff z_1 = z_2.$$

Show that the quotient space $\overline{X} = X/\sim$ is homeomorphic to [-1, 1].

Some Hints

125. Define a function $f: X \to [0, \infty)$ by the formula

$$f(x,y) = x^2 + y^2$$

Using one of our lemmas, you will then get a continuous function $\overline{f} \colon \overline{X} \to [0, \infty)$. Using Problem 43, show that this is actually a homeomorphism.

126. Assuming that $f: X \to Y$ and $g: Y \to Z$ are both quotient maps,

U is open in $Z \iff g^{-1}(U)$ is open in Y

and also

V is open in
$$Y \iff f^{-1}(V)$$
 is open in X.

- 127. Take a circular piece of paper and glue its boundary together. What familiar space does this give rise to?
- 128. Let $X = B^2$ and let Y be the quotient space obtained in the previous problem. You will need to find a continuous function $f: X \to Y$ which is constant throughout the boundary. Using one of our lemmas, you may then get a continuous function $\overline{f}: \overline{X} \to Y$.
- 129. First, show that the quotient space \overline{X} consists of three elements only, namely

$$\overline{X} = \{[0], [1], [-1]\}.$$

Which subsets of \overline{X} are open? Do distinct points have disjoint neighbourhoods?

130. Let $r: X \to A$ be the retraction and $i: A \to X$ be the inclusion. Show that

$$U = r^{-1}(U) \cap A$$

for all subsets $U \subset A$.

131. Consider the function $f: X \to [-1, 1]$ defined by f(x, y, z) = z. Using one of our lemmas, you will get a continuous function $\overline{f}: \overline{X} \to [-1, 1]$.