Maths 212, Homework #15

First four problems: due Thursday, Mar. 9

- 109. Suppose that X is path connected and let $x_0, x_1 \in X$. Show that $\pi_1(X, x_0)$ is abelian if and only if $\hat{\alpha} = \hat{\beta}$ for all paths α, β from x_0 to x_1 .
- 110. Suppose that X has the discrete topology. Show that the projection $p: X \times Y \to Y$ is a covering map for any space Y whatsoever.
- 111. Show that every covering space of a Hausdorff space must also be Hausdorff.
- 112. Letting B^2 denote the unit ball in \mathbb{R}^2 , show that there is no retraction $r: B^2 \to S^1$.
- 113. Show that homeomorphic spaces have isomorphic fundamental groups. Namely, assuming

$$f\colon (X,x_0)\to (Y,y_0)$$

is a homeomorphism between topological spaces, show that the induced homomorphism

$$f_* \colon \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

is actually an isomorphism between fundamental groups.

- 114. Suppose X is connected and $p: Y \to X$ is a covering map. Assuming that $p^{-1}(x_0)$ has n elements for some $x_0 \in X$, show that $p^{-1}(x)$ has n elements for all $x \in X$.
- 115. Suppose that X is simply connected and let Y be a path connected covering space of X. Show that the covering map $p: Y \to X$ is actually a homeomorphism.
- 116. Show that a retract of a contractible space must also be contractible.

Some Hints

109. In the case that $\pi_1(X, x_0)$ is abelian, $[\alpha * \overline{\beta}]$ commutes with any loop [f] around x_0 , hence

$$[f] * [\alpha] * [\overline{\beta}] = [f] * [\alpha * \overline{\beta}] = [\alpha * \overline{\beta}] * [f] = [\alpha] * [\overline{\beta}] * [f]$$

Use this fact together with the definition of $\hat{\alpha}$ to prove the first part. For the second part, you have to show that

$$[f] = [h] * [f] * [h]$$

for all loops f, h around x_0 ; use the fact that $\hat{\alpha}$ is an isomorphism.

- 110. Note that $p^{-1}(U)$ is the union of sets of the form $V_y = X \times \{y\}$.
- 111. Suppose $y_0 \neq y_1$ and consider two cases. If $p(y_0)$ happens to coincide with $p(y_1)$, then this point has a neighbourhood U such that $p^{-1}(U)$ is a disjoint union of V_{α} 's; argue that the points y_0, y_1 lie in distinct V_{α} 's. The case $p(y_0) \neq p(y_1)$ is even easier.
- 112. Letting i denote inclusion, we have maps

$$i: S^1 \to B^2, \qquad r: B^2 \to S^1$$

and induced homomorphisms

$$i_*: \pi_1(S^1, y_0) \to \pi_1(B^2, x_0), \qquad r_*: \pi_1(B^2, x_0) \to \pi_1(S^1, y_0).$$

Note that one of the fundamental groups is trivial, while $r \circ i$ is the identity map.

- 113. Let g be the inverse of f and note that $g_* \circ f_* = (g \circ f)_*$ is the identity map.
- 114. Let A be the set of all $x \in X$ for which $p^{-1}(x)$ has n elements. Try to show that A is both open and closed in X. Since X is connected, this also implies that A = X.
- 115. In this case, there is a bijective map $\Phi: \pi_1(X, x_0) \to p^{-1}(x_0)$.
- 116. Let $r: X \to Y$ be a retraction and let $F: X \times I \to X$ be a homotopy between the identity and a constant map. You need only define a homotopy $G: Y \times I \to Y$ between the identity and a constant map.