Maths 212, Homework #13 First four problems: due Thursday, Feb. 23

95. Prove Minkowski's inequality. In other words, show that the inequality

$$\left(\sum_{i} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i} |x_i|^p\right)^{1/p} + \left(\sum_{i} |y_i|^p\right)^{1/p}$$

holds for all real numbers x_i, y_i and each p > 1.

- 96. Show that ℓ^p is complete for each $1 \leq p < \infty$.
- 97. Let $a = (a_1, a_2, \ldots)$ be a bounded sequence of real numbers and set

$$Tx = (a_1x_1, a_2x_2, \ldots)$$
 for each $x = (x_1, x_2, \ldots) \in \ell^2$.

Show that T is a bounded linear transformation $T: \ell^2 \to \ell^2$ and compute its norm ||T||.

- 98. Let ℓ_0 consist of all sequences of real numbers that contain only finitely many nonzero terms. Show that ℓ_0 is dense in ℓ^p for each $1 \leq p < \infty$.
- 99. Let C_0 consist of all sequences of real numbers $x = (x_1, x_2, \ldots)$ such that

$$\lim_{n \to \infty} x_n = 0.$$

Show that C_0 is complete with respect to the metric induced by the ℓ^{∞} -norm.

100. Let ℓ_0 be as in Problem 98 and set

$$Tx = \sum_{n=1}^{\infty} x_n$$
 for each $x = (x_1, x_2, \ldots) \in \ell_0$

- (a) Show that $T: \ell_0 \to \mathbb{R}$ is continuous when ℓ_0 is equipped with the ℓ^1 -norm.
- (b) Show that $T: \ell_0 \to \mathbb{R}$ is not continuous when ℓ_0 is equipped with the ℓ^2 -norm.

101. Show that the averaging operator $A: \ell^{\infty} \to \ell^{\infty}$ defined by

$$Ax = \left(x_1, \frac{x_1 + x_2}{2}, \frac{x_1 + x_2 + x_3}{3}, \ldots\right)$$

is a bounded linear transformation and find its norm.

Some Hints

95. Let $x = (x_1, x_2, \ldots)$ and $y = (y_1, y_2, \ldots)$ for convenience. Try to show that

$$\begin{aligned} ||x+y||_p^p &= \sum_i |x_i+y_i| \cdot |x_i+y_i|^{p-1} \\ &\leq \sum_i |x_i| \cdot |x_i+y_i|^{p-1} + \sum_i |y_i| \cdot |x_i+y_i|^{p-1} \\ &\leq ||x||_p \cdot ||x+y||_p^{p-1} + ||y||_p \cdot ||x+y||_p^{p-1} \end{aligned}$$

using the triangle and Hölder's inequality. Conclude that $||x + y||_p \le ||x||_p + ||y||_p$.

- 96. Suppose that $x_n = (x_{n1}, x_{n2}, ...)$ is a Cauchy sequence in ℓ^p , deduce that x_{nk} is a Cauchy sequence in \mathbb{R} for each k, and then finish the proof.
- 97. Linearity is rather easy to establish. For the remaining parts, you will need to note that

$$\sum_{i=1}^{\infty} a_i^2 x_i^2 \le ||a||_{\infty}^2 \sum_{i=1}^{\infty} x_i^2 \implies ||Tx||_2 \le ||a||_{\infty} ||x||_2.$$

This leads to the inequality $||T|| \leq ||a||_{\infty}$. Try to argue that equality actually holds; this is not a trivial thing to do, but it's not terribly hard, either.

- 98. Pick an element $a = (a_1, a_2, ...)$ in ℓ^p and try to find a sequence of elements $x_n \in \ell_0$ such that $||x_n a||_p \to 0$. This actually shows that $\operatorname{Cl} \ell_0 = \ell^p$, as needed. In case you get stuck, we did something similar in class; see Example 4.
- 99. Suppose that $x_n = (x_{n1}, x_{n2}, ...)$ is a Cauchy sequence in C_0 , deduce that x_{nk} is a Cauchy sequence in \mathbb{R} for each k, and then finish the proof.
- 100. To say that T is continuous is to say that T is bounded.
- 101. Linearity is rather easy to establish. For the remaining parts, you will need to note that

$$|x_1 + \ldots + x_n| \le n \cdot ||x||_{\infty} \implies ||Ax||_{\infty} \le ||x||_{\infty}.$$

Can you find some $x \in \ell^{\infty}$ such that equality holds in the inequality above?