Maths 212, Homework #11

First five problems: due Thursday, Feb. 9

- 80. Find a nested sequence of nonempty, bounded subsets of \mathbb{R} whose intersection is empty.
- 81. Find a nested sequence of nonempty, closed subsets of \mathbb{R} whose intersection is empty.
- 82. Is an infinite discrete metric space bounded? Is it totally bounded? Explain.
- 83. Given a uniformly continuous function f on a totally bounded metric space X, show that the image f(X) is totally bounded as well.
- 84. Does the sequence $f_n(x) = (x+n)^2$ form an equicontinuous family at x = 0? Explain.
- 85. Show that the sequence $f_n(x) = \cos(nx)$ does not form an equicontinuous family at x = 0.
- 86. Suppose that X is compact Hausdorff and let $f: X \to X$ be continuous. Show that there exists a closed subset $A \subset X$ such that f(A) = A.
- 87. Given a metric space X and some nonempty subset $A \subset X$, consider the function

$$\rho(x) = \inf_{z \in A} d(x, z).$$

- (a) Show that $x \in \operatorname{Cl} A$ if and only if $\rho(x) = 0$.
- (b) Show that ρ is Lipschitz continuous.
- 88. Show that the zero function is the only function $f \in \mathcal{C}([0,1])$ such that

$$f(x) = \int_0^x (x - y) f(y) \, dy$$
 for all $0 \le x \le 1$.

Some Hints

- 80. Look for a nested sequence of open subsets.
- 81. Look for a nested sequence of unbounded subsets.
- 82. Yes; no.
- 83. You need only show that every sequence in f(X) has a Cauchy subsequence. Problem 69 should be of help here, still do not use it without proof.
- 84. Show that $|f_n(1/n) f_n(0)| > 2$ for all n.
- 85. Show that $|f_n(\pi/n) f_n(0)| = 2$ for all *n*.
- 86. Let $A_1 = X$ and set $A_{n+1} = f(A_n)$ for each $n \ge 1$. This is a nested sequence of compact sets; complete the proof by looking at their nonempty intersection.
- 87a. To say that $x \in ClA$ is to say that some sequence of points of A converges to x.
- 87b. Letting $x, y \in X$ be fixed, show that $\rho(x) \leq d(x, y) + d(y, z)$ for all $z \in A$.
- 88. Show that the given integral defines a contraction on $\mathcal{C}([0,1])$ with the d_{∞} metric.