Maths 212, Homework #1

First four problems: due Thursday, Oct. 20

- 1. Let $A = \mathbb{Q} \cap (0, \pi)$ be the set of all rational numbers between 0 and π . Find the least upper bound of A and prove that your answer is correct.
- 2. Let A be a bounded set of real numbers and let $B \subset A$. Show that B is also bounded and that $\sup B \leq \sup A$. Establish a similar relation between $\inf A$ and $\inf B$.
- 3. Define a sequence $\{s_n\}$ by setting $s_1 = 1$ and then

$$s_{n+1} = \frac{2s_n + 2}{s_n + 2}$$

for each $n \ge 1$. Show that this sequence is convergent and find its limit.

- 4. Let $\{s_n\}$ be a convergent sequence and denote its limit by L. Given some L' < L, show that there exists an integer N such that $s_n > L'$ for all $n \ge N$.
- 5. (Squeeze law) Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be three sequences with $a_n \leq b_n \leq c_n$ for each integer n. Assuming that $a_n \to L$ and $c_n \to L$, show that $b_n \to L$ as well.
- 6. Let $\{s_n\}$ be a convergent sequence. Intuitively, s_{n+1} and s_n should be approaching the exact same limit. Verify this rigorously by showing that $s_{n+1} s_n \to 0$.
- 7. Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \left\{ \begin{array}{ll} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{array} \right\}.$$

Determine all points at which f is continuous.