TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

SF Mathematics

Trinity Term 1999

JS Two Subject Moderatorship

SS Two Subject Moderatorship

Course 212

Tuesday, June 1

Luce Hall

14.00 - 17.00

Dr. D. R. Wilkins

Credit will be given for the best 7 questions answered. Logarithmic tables will be available in the examination hall.

- 1. Let a and b be real numbers satisfying a < b, and let $f: [a, b] \to \mathbb{R}$ be a continuous real-valued function on the closed bounded interval [a, b].
 - (a) Prove that there exists a constant M with the property that $|f(x)| \leq M$ for all $x \in [a, b]$.
 - (b) Prove that there exist real numbers u and v in the interval [a, b] with the property that $f(u) \leq f(x) \leq f(v)$ for all $x \in [a, b]$.
 - (c) Suppose that f(x) < g(x) for all $x \in [a, b]$, where $g: [a, b] \to \mathbb{R}$ is a continuous function on [a, b] and g(x) > 0 for all $x \in [a, b]$. Prove that there exists a real number θ satisfying $0 < \theta < 1$ (where θ is independent of x) such that $f(x) \le \theta g(x)$ for all $x \in [a, b]$.
- 2. Determine which of the following subsets of \mathbb{R}^2 are open in \mathbb{R}^2 and which are closed in \mathbb{R}^2 , giving reasons for your answers:—
 - (i) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 + 2x \ge 3 \text{ or } x^2 + y^2 2x \ge 3\},\$
 - (ii) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 + 2x < 3 \text{ and } x^2 + y^2 2x \ge 3\},\$
 - (ii) $\{(x,y) \in \mathbb{R}^2 : y^2 = x(x^2 1) \text{ and } x > 0\}.$

- 3. (a) What is a metric space?
 - (b) What is an open set in a metric space? What is a closed set in a metric space?
 - (c) Prove that any union of open sets in a metric space is an open set. Prove also that any finite intersection of open sets in a metric space is an open set.
 - (d) Let X be a metric space with distance function d, and let u and v be points of X. Let $W = \{x \in X : d(x, u) < d(x, v)\}$. Prove that W is an open set in X.
- 4. (a) Let X and Y be metric spaces. Define is meant by saying that a function $f: X \to Y$ is continuous. [Your definition should be expressed in terms of the distance functions on the metric spaces X and Y, and should not make reference to open or closed sets.]
 - (b) Let X and Y be metric spaces, and let $f: X \to Y$ be a function from X to Y. Prove that the function $f: X \to Y$ is continuous if and only if the preimage $f^{-1}(V)$ of every open set V in Y is an open set in X.
 - (c) Let X and Y be metric spaces, and let $f: X \to Y$ be a continuous function from X to Y. Let G be a closed set in Y. Explain why the preimage $f^{-1}(G)$ of G is a closed set in X.
- 5. (a) What is a topological space?
 - (b) Let X_1, X_2, \ldots, X_n be topological spaces. Give the definition of the *product* topology on the Cartesian product $X_1 \times X_2 \times \cdots \times X_n$ of X_1, X_2, \ldots, X_n , and prove that the collection of open sets in $X_1 \times X_2 \times \cdots \times X_n$ satisfies the axioms in the definition of a topological space.
 - (c) Prove that the product topology on \mathbb{R}^n (obtained on regarding \mathbb{R}^n as the Cartesian product of n copies of the real line \mathbb{R}) is the same as the usual topology on \mathbb{R}^n generated by the Euclidean distance function on \mathbb{R}^n .
- 6. (a) What is a compact topological space?
 - (b) Let X and Y be topological spaces, let $f: X \to Y$ be a continuous function from X to Y, and let K be a compact subset of X. Prove that f(K) is a compact subset of Y.
 - (c) Explain why any closed subset of a compact topological space is compact.
 - (d) Prove that any compact subset of a metric space is closed.
 - (e) Prove that a subset of \mathbb{R}^n is compact if and only if it is both closed and bounded. [You may use without proof the result that any finite Cartesian product of compact topological spaces is compact.]

- 7. (a) What is a connected topological space?
 - (b) Prove that a topological space X is connected if and only if every continuous function $f: X \to \mathbb{Z}$ from X to the set of integers is constant.
 - (c) Let $f: X \to Y$ be a continuous function between topological spaces X and Y, and let A be a connected subset of X. Prove that f(A) is a connected subset of Y.
 - (d) What are the connected components of $\{(x,y,z)\in\mathbb{R}^3:z^2-x^2-y^2=1\}$? [Justify your answer.]
- 8. (a) What is a *norm* on a real or complex vector space? What is meant by saying that two norms on a real or complex vector space are *equivalent*?
 - (b) Let ||.|| be a norm on \mathbb{R}^n . Prove that the function $\mathbf{x} \mapsto ||\mathbf{x}||$ is continuous with respect to the usual topology on \mathbb{R}^n .
 - (c) Prove that any two norms on \mathbb{R}^n are equivalent, and induce the usual topology on \mathbb{R}^n . [You may use without proof the result that if two norms on a real or complex vector space are both equivalent to some third norm then they are equivalent to each other.]
- 9. (a) What is meant by saying that an open set U in $\mathbb{C} \setminus \{0\}$ is evenly covered by the exponential map $\exp: \mathbb{C} \to \mathbb{C} \setminus \{0\}$?
 - (b) Let $\gamma: [0,1] \to \mathbb{C} \setminus \{0\}$ be a continuous path in $\mathbb{C} \setminus \{0\}$, and let z be a complex number satisfying $\exp(z) = \gamma(0)$. Proof that there exists a unique continuous path $\tilde{\gamma}: [0,1] \to \mathbb{C}$ such that $\tilde{\gamma}(0) = z$ and $\exp \circ \tilde{\gamma} = \gamma$. [This is the *Path-Lifting Theorem* satisfied by the exponential map.]
- 10. (a) Let $\gamma:[0,1]\to\mathbb{C}$ be a closed curve in the complex plane (where $\gamma(0)=\gamma(1)$), and let w be a complex number that does not lie on the curve. Give the definition of the winding number $n(\gamma,w)$ of the closed curve γ about w.
 - (b) Let w be a complex number and, for each $\tau \in [0,1]$, let $\gamma_{\tau}:[0,1] \to \mathbb{C}$ be a closed curve in \mathbb{C} which does not pass through w. Suppose that the map sending $(t,\tau) \in [0,1] \times [0,1]$ to $\gamma_{\tau}(t)$ is a continuous map from $[0,1] \times [0,1]$ to \mathbb{C} . Using the Monodromy Theorem, or otherwise, prove that $n(\gamma_0, w) = n(\gamma_1, w)$.
 - (c) State and prove the Fundamental Theorem of Algebra