TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

SF Mathematics

Trinity Term 1998

JS Two Subject Moderatorship

SS Two Subject Moderatorship

Course 212

Wednesday, May 20

Room 4050B

09.30 - 12.30

Dr. D.R. Wilkins

Credit will be given for the best 7 questions answered. Logarithmic tables will be available in the examination hall

- 1. Determine which of the following subsets of \mathbb{R}^3 are open in \mathbb{R}^3 and which are closed in \mathbb{R}^3 , giving reasons for your answers: -
 - (i) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \ge 4 \text{ and } y \le 1\}.$
 - (ii) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \ge 4 \text{ and } y < 1\},\$
 - (iii) $\{(x, y, z) \in \mathbb{R}^3 : x > 0 \text{ and } x^2 y^2 \ge 1\}.$

2. Let S^2 denote the unit sphere $\{(x,y,x) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ in \mathbb{R}^3 , and let $\mathbf{n} = (0,0,1)$. For each point \mathbf{x} of $S^2 \setminus \{\mathbf{n}\}$, let $\varphi(\mathbf{x})$ be the point where the line through \mathbf{n} and \mathbf{x} intersects the plane

$$H = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$$

Prove that $\varphi: S^2 \setminus \{\mathbf{n}\} \to H$ is a homeomorphism.

- 3. (a) What is a metric space?
 - (b) What is an open set in a metric space? What is a closed set in a metric space?
 - (c) What is meant by saying that a sequence $x_1, x_2, x_3, ...$ of points in a metric space X converges to some point p of X?
 - (d) Let F be a closed set in a metric space X. Suppose that some sequence x_1, x_2, x_3, \ldots of points of F converges to some point p of X. Prove that p belongs to F.
 - (e) Let $f: X \to \mathbb{R}$ be a continuous function on a metric space X, and let x_1, x_2, x_3, \ldots be a sequence of points of X that converges to some point p of X. Let c be a real number. Suppose that $f(x_j) \leq c$ for all natural numbers j. Explain why $f(p) \leq c$.
- 4. (a) What is a topological space?
 - (b) A subset N of a topological space is said to be a neighbourhood of a point of x of X if there exists some open set U such that $x \in U$ and $U \subset N$. Prove that a subset V of a topological space X is open in X if and only if V is a neighbourhood of each point of V.
 - (c) Let A be a subset of a topological space X. The interior A^o of A is the union of all open sets contained in A. What are the interiors of the following subsets of \mathbb{R}^2 :
 - (i) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$?
 - (ii) $\{(x,y) \in \mathbb{R}^2 : y = 7\}$?
 - (d) Let A be a subset of a topological space X and let $x_1, x_2, x_3, ...$ be an infinite sequence of points of X that converges to some point p of the interior of A. Explain why there exists some positive integer N such that $x_j \in A$ whenever $j \geq N$.
- 5. (a) What is the product topology on a Cartesian product of topological spaces $X_1, X_2, ..., X_n$.
 - (b) Prove that a function $f: Z \to X_1 \times X_2 \times \cdots \times X_n$ from a topological space Z to the Cartesian product of topological spaces $X_1, X_2, ..., X_n$ is continuous if and only if the components $f_1, f_2, ..., f_n$ of f are continuous. (Here

$$f(z) = (f_1(z), f_2(z), ..., f_n(z))$$

for all $z \in Z$.)

(c) The topological space \mathbb{R}^n can be regarded as the Cartesian product of n copies of the space \mathbb{R} . Prove that the product topology on \mathbb{R}^n coincides with the usual topology generated by the Euclidean norm on \mathbb{R}^n

- 6. (a) What is a compact topological space?
 - (b) Let $f: X \to \mathbb{R}$ be a continuous real-vauled function on a compact topological space X. Prove that f is bounded by the above and below on X. Prove also that there exist points u and v of X such that $f(u) \leq f(x) \leq f(v)$ for all $x \in X$.
 - (c) Let A be a compact subset of a metric space X. Prove that A is closed in X.
- 7. (a) What is meant by saying that a topological space is *connected*? What is meant by saying that a topological space is *path-connected*?
 - (b) Prove that a topological space is connected if and only if every continuous function from X to the set \mathbb{Z} of integers is constant.
 - (c) Prove that every path-connected topological space is connected.
 - (d) What are the connected components of

$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \neq 2x\}$$
?

[Justify your answer.]

- 8. (a) What is a normed vector space (over the field of real or complex numbers). What is a Banach space?
 - (b) Let X be a Banach space, and let $x_1, x_2, x_3,...$ be elements of X. Suppose that $\sum_{n=1}^{+\infty} ||x_n||$ is convergent. Prove that $\sum_{n=1}^{\infty} x_n$ is convergent, and

$$\left\| \sum_{n=1}^{+\infty} x_n \right\| \le \sum_{n=1}^{+\infty} \|x_n\|$$

- 9. State and prove the Contraction Mapping Theorem.
- 10. Write an account of the theory of winding numbers of closed curves in the complex plane, selecting aspects of the theory that you consider to be important.

© UNIVERSITY OF DUBLIN 1998