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1. (i) Define a metric.
(ii) Give an example of a metric on R different from the standard one.
(111) Let d; and d be two metrics on the same set X, is it always true that d := d; + 2d; is

also a metric? Justify your answer.

2. Find the interior and the boundary of the following subsets of R%:
() {(z,9) sz +y <1}
(it) {(z,y) : 2y = -1}
(i) {(z,y) : 7 € Qy > O},
(i) {(z,y) 1z —y e R\ Q};

3. Prove or disprove:
(i) Any map from a discrete metric space into a general metric space is continuous.
(1) Any map from a metric space into a discrete metric space is continuous.
(71} Any set in a discrete metric space is bounded.

(iv) Any set in a discrete metric space is open.

4.
(i) Define a complete metric space and give an example of metric space which is not complete.
(i) State and prove Cantor’s intersection theorem. s it still true without completeness?

Justify your answer.

5.
(1) Define a topological space.
(1i) What is discrete and what is indiscrete topological space?
(11t) Give an example of a topology on the set {1, 2, 3} which is neither discrete nor indiscrete.

Justify your answer.

6. (¢) Define a Hausdorff topological space.
(i) Prove that in a Hausdorff topological space, the limit of a sequence of points is unique.
(711) What is the relation between compactness and closedness for subsets in a Hausdorff

topological space?
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7. Let X and Y be two metric spaces, B C Y a subset and f: X — Y a continuous map.

Prove or disprove:

(1) Bis closed in Y == f 1(B) is closed in X;
(i) B is compact = f~1(B) C X is compact;
(111) B and X are compact = f~1(B) is compact;

(iv) B is connected == f~!(B) is connected;

(i) Define a normed vector space and a bounded linear operator between two normed spaces.
(i) Show that a linear operator is continuous if and only if it is bounded.

(iii) Define the norm of a bounded operator. Give an example of an operator on R? with
norm 1.
9.

(i) Define the fundamental group of a topological space and prove that it is indeed a group.

(ii) Give an example of a topological space with a nontrivial fundamental group. Justify your

answer,
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