TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

SF Mathematics

Trinity Term 2004

JS Two Subject Moderatorship

SS Two Subject Moderatorship

Course Maths: 212

Monday, May 17

RDS

14.00 - 17.00

Dr. D. Zaitsev

Credit will be given for the best SIX questions answered

- 1. (a) Define a metric space. Give an example of a metric space (X, d) and of a pair of a set X and a function $d: X \times X \to \mathbb{R}$ such that (X, d) is not a metric space.
 - (b) Define descrete metric space.
 - (c) Define a metric d on the set of all continuous functions X = C([a, b]) on an interval $[a, b] \subset \mathbb{R}$ and show that (X, d) is a metric space.
- 2. Which of the following subsets of \mathbb{R}^2 are open and which are closed in \mathbb{R}^2 ? Justify your answer.
 - (a) $\{(x,y) \in \mathbb{R} : 1 < x^2 + y < 2\};$
 - (b) $\{(x,y) \in \mathbb{R} : x < 0, xy = 1\};$
 - (c) $\{(x,y) \in \mathbb{R} : x < 0, y \ge 0\}.$
 - (d) $\{(x,y)\in\mathbb{R}: x^2+y^2\in\mathbb{Q}\}.$
- 3. (a) Define a continuous function between metric spaces (in terms of metrics). Show that any function between discrete metric spaces is continuous.
 - (b) Given a continuous function $f: M \to \mathbb{R}$, show that its square $f^2: M \to \mathbb{R}$ is also continuous.
- 4. (a) Define a topological space and show that any metric space carries a natural (induced) topology.

- (b) Define convergent sequences in a metric space using the metric and in a topological space using the topology. Show that in a metric space both definitions are equivalent, i.e. a sequence converges to a limit point in the induced topology if and only if it converges to the same point with respect to the given metric.
- (c) Define a Hausdorff topological space and show that the induced topology of a metric space is always Hausdorff.
- 5. (a) Which of the following subspaces of \mathbb{R}^n (for suitable n) are complete? Justify your answer.
 - (i) $\{1/n^2 : n \in \mathbb{N}\};$
 - (ii) $\mathbb{Q} \times \mathbb{R}$;
 - (iii) $\{(x,y) \in \mathbb{R}^2 : y \ge \frac{1}{1+x^2} \}$.
 - (b) State Banach's contraction principle.
- 6. Consider two topological spaces X, Y, and let f be a continuous map $f: X \to Y$. Prove or disprove the following:
 - (i) $A \subseteq X$ closed $\Longrightarrow f(A) \subseteq Y$ closed;
 - (ii) X compact $\Longrightarrow f(X)$ compact;
 - (iii) X connected $\Longrightarrow f(X)$ connected;
 - (iv) X, Y metric spaces; X complete $\Longrightarrow f(X)$ complete.
- 7. Prove or disprove:
 - (a) any continuous function on a compact topological space has Intermediate Value Property;
 - (b) any continuous function on a compact topological space is bounded;
 - (c) any continuous function on a connected topological space has Intermediate Value Property;
 - (d) any continuous function on a connected topological space is bounded.
- 8. (a) What is a Banach space?
 - (b) Define equivalent norms and give an example of two different equivalent norms on a vector space.
 - (c) Show that a linear operator between normed spaces is bounded if and only if it continuous.
- 9. (a) When two closed curves in a topological space are called homotopic?
 - (b) For a closed curve in the complex plane $\mathbb C$ define the winding number and show that homotopic curves have the same winding number.
 - (c) Give an example of two connected open sets in \mathbb{R}^2 that are not homeomorphic. Justify your answer.

© UNIVERSITY OF DUBLIN 2004