TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

SF Mathematics SF Theoretical Physics SF TSM Trinity Term 2003

Course 212

Thursday, May 22

RDS-Simmonscourt

14.00 - 17.00

Dr J. Bennett

Credit will be given for the best 6 questions answered.

- 1. (i) State the Completeness Axiom for the real numbers.
 - (ii) Prove that a bounded monotone sequence of real numbers is convergent.
 - (iii) Show that any sequence of real numbers $\{a_n\}$ has a monotone subsequence.
 - (iv) Deduce the Bolzano–Weierstrass Theorem for bounded sequences of real numbers.
- 2. Let (X, d_X) and (Y, d_Y) be metric spaces.
 - (i) Define what it means for a function $f: X \to Y$ to be continuous. [The definition you give should make no explicit reference to open sets.]
 - (ii) Prove that if $f: X \to Y$ is continuous then $f^{-1}(U)$ is open in X whenever U is open in Y.
 - (iii) Determine which of the following subsets of \mathbb{R}^3 are open and which are closed, giving reasons for your answers.
 - (a) $\{(x, y, z) \in \mathbb{R}^3 : xyz \ge 1\}$
 - (b) $\{(x, y, z) \in \mathbb{R}^3 : x^2 < z < y^2\}$

- 3. (i) Let X be a metric space with metric d. What does it mean for a subset U of X to be open.
 - (ii) Prove that the union of an arbitrary collection of open sets in a metric space is an open set. Is this true if the word "open" is replaced with "closed"? Justify your answer.
 - (iii) Prove that for each $x \in X$ and $\epsilon > 0$,

$$\{x' \in X: d(x,x') < \epsilon\}$$

is open in X.

- (iv) Prove that a subset U of a metric space is open if and only if it can be expressed as a union of open balls.
- 4. (i) What is meant by a continuous function between topological spaces?
 - (ii) What is a Hausdorff space?
 - (iii) Suppose that X is a Hausdorff space and $f: X \to X$ is continuous. If $x \in X$ is such that $f(x) \neq x$, show that there exists an open set U_x in X, containing x, for which $f(y) \neq y$ for all $y \in U_x$.
 - (iv) Show that the set of fixed points of f

$$\{x \in X : f(x) = x\}$$

is closed in X.

- (v) Give an example of a (discontinuous) function $f: \mathbb{R} \to \mathbb{R}$ for which $\{x \in \mathbb{R} : f(x) = x\}$ is not closed.
- 5. (i) What does it mean for a topological space to be compact?
 - (ii) Let X and Y be topological spaces with X compact. Prove that if $f: X \to Y$ is a continuous function then f(X) is a compact subset of Y.
 - (iii) State the Heine–Borel Theorem for subsets of \mathbb{R}^n .
 - (iv) Prove that if a continuous function $f: \mathbb{S}^{n-1} \to \mathbb{R}$ is such that $f(\omega) \neq 0$ for all $\omega \in \mathbb{S}^{n-1}$, then there exists $\epsilon > 0$ such that $|f(\omega)| \geq \epsilon$ for all $\omega \in \mathbb{S}^{n-1}$.

[Here $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ denotes the unit sphere in \mathbb{R}^n .]

- 6. (i) What does it mean for a topological space to be *connected*? Give three further equivalent statements.
 - (ii) Let X and Y be topological spaces with X connected. Prove that if $f: X \to Y$ is continuous then f(X) is a connected subset of Y.
 - (iii) Prove that \mathbb{R} is connected. [You may use any standard results for functions of a real variable provided you state them clearly.]
 - (iv) Show that

$$\{(x+x^2, x-x^4): x \in \mathbb{R}\}$$

is a connected subset of \mathbb{R}^2 .

- 7. (i) State and prove the Contraction Mapping Theorem.
 - (ii) Let $f_0 \in C([0,1])$ be fixed. Prove that there is a unique $f \in C([0,1])$ satisfying the integral equation

$$f(t)=f_0(t)+\int_0^{t/2}f(s)ds$$

for all $t \in [0, 1]$.

- 8. (i) What is a norm on a real vector space X?
 - (ii) State the Riesz Lemma for normed vector spaces.
 - (iii) Let X be a normed vector space over $\mathbb R$. Suppose that Ω is a subset of X such that

$$\{x\in X: \|x\|=1\}\subset \Omega.$$

Use the Riesz Lemma to prove that if Ω is compact then X must be finite dimensional.

- 9. Let X and Y be topological spaces and let $x_0 \in X$.
 - (i) Define the fundamental group $\pi_1(X, x_0)$. [Your definition should include a description of the group law.]
 - (ii) Show that if a continuous function $h: X \to X$ is homotopic to the identity I_X on X, then the induced homomorphism

$$h_*: \pi_1(X, x_0) \to \pi_1(X, h(x_0))$$

is an isomorphism.

- (iii) Show that if there are continuous functions $f: X \to Y$ and $g: Y \to X$ such that $g \circ f$ is homotopic to I_X , then $\pi_1(X, x_0)$ is isomorphic to a subgroup of $\pi_1(Y, f(x_0))$.
- (iv) Explain why \mathbb{S}^1 is not a retract of D^2 .

© UNIVERSITY OF DUBLIN 2003