TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

SF Mathematics

Trinity Term 2001

JS Two Subject Moderatorship

SS Two Subject Moderatorship

Course 212

Wednesday, May 30

RDS-Simmonscourt 1

14.00 - 17.00

Dr. D. R. Wilkins

Credit will be given for the best 6 questions answered. Logarithmic tables will be available in the examination hall.

- 1. State and prove the Intermediate Value Theorem.
- 2. Determine which of the following subsets of \mathbb{R}^2 are open in \mathbb{R}^2 and which are closed in \mathbb{R}^2 , giving reasons for your answers:—
 - (i) $\{(x,y) \in \mathbb{R}^2 : -1 < x < 1 \text{ and } -1 < y < 1\};$
 - (ii) $\{(x,y) \in \mathbb{R}^2 : x > 0, y > 0 \text{ and } xy = 1\};$
 - (iii) $\{(x,y) \in \mathbb{R}^2 : -1 < x < 1 \text{ and } -1 \le y \le 1\}.$
- 3. (a) What is a metric space?
 - (b) What is an open set in a metric space? What is a closed set in a metric space?
 - (c) What is meant by saying that a sequence x_1, x_2, x_3, \ldots of points in a metric space X converges to some point p of X.
 - (d) Prove that a sequence x_1, x_2, x_3, \ldots of points in a metric space X converges to a point p of X if and only if, given any open set U in X such that $p \in U$, there exists some positive integer N such that $x_j \in U$ whenever $j \geq N$.
 - (e) Let F be a closed set in a metric space X. Suppose that a sequence x_1, x_2, x_3, \ldots of points of F converges to a point p of X. Prove that p belongs to F.
 - (f) Let x_1, x_2, x_3, \ldots and y_1, y_2, y_3, \ldots be infinite sequences of real numbers. Suppose that $x_j^2 + y_j^2 \leq 1$ for all positive integers j, and that $x_j \to a$ and $y_j \to b$ as $j \to \infty$, where a and b are real numbers. Explain why $a^2 + b^2 \leq 1$.

- 4. (a) Let X and Y be metric spaces. What is meant by saying that a function $f: X \to Y$ is continuous? [Your definition should be expressed in terms of the distance functions on the metric spaces X and Y, and should not make reference to open or closed sets.]
 - (b) Let X and Y be metric spaces, and let $f: X \to Y$ be a function from X to Y. Prove that the function $f: X \to Y$ is continuous if and only if the preimage $f^{-1}(V)$ of every open set V in Y is an open set in X.
 - (c) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function from \mathbb{R} to itself. Explain why the set

$$\{(x,y) \in \mathbb{R}^2 : x^2y^2 < f(x)\}$$

is an open set in \mathbb{R}^2 .

- 5. (a) What is a topological space?
 - (b) Let X and Y be topological spaces. What is meant by saying that a function $q: X \to Y$ from X to Y is an identification map?
 - (c) Let X be a topological space, let Y be a set, and let $q: X \to Y$ be a surjective function. Prove that there is a unique topology on Y for which the function $q: X \to Y$ is an identification map.
 - (d) Let X and Y be topological spaces, and let $q: X \to Y$ be an identification map. Let Z be a topological space, and let $f: Y \to Z$ be a function from Y to Z. Prove that the function $f: Y \to Z$ is continuous if and only if the composition function $f \circ q: X \to Z$ is continuous.
 - (e) Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} x - 1 & \text{if } x \ge 1; \\ 0 & \text{if } -1 \le x \le 1; \\ x + 1 & \text{if } x \le -1. \end{cases}$$

Is the function $f: \mathbb{R} \to \mathbb{R}$ an identification map? [Justify your answer.]

- 6. (a) What is meant by saying that a topological space is compact?
 - (b) What is a Hausdorff topological space?
 - (c) Let X be a Hausdorff topological space, and let K be a compact subset of X. Let x be a point of $X \setminus K$. Prove that there exist open sets V and W in X such that $x \in V$, $K \subset W$ and $V \cap W = \emptyset$.
 - (d) Explain why every compact subset of a Hausdorff topological space is closed.
- 7. (a) What is meant by saying that a topological space is *connected*? What is meant by saying that a topological space is *path-connected*?
 - (b) Prove that a topological space X is connected if and only if every continuous function $f: X \to \mathbb{Z}$ from X to the set of integers is constant.
 - (c) Prove that every path-connected topological space is connected.
 - (d) What are the connected components of $\{(x,y)\in\mathbb{R}^2:x^2-y^2=0\}$? [Justify your answer.]

- 8. (a) State and prove the Contraction Mapping Theorem.
 - (b) Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be a function from \mathbb{R}^3 to itself. Suppose that $f(\mathbf{0}) = \mathbf{0}$ and

$$|f(\mathbf{x}) - f(\mathbf{y})| \le |\mathbf{x} - \mathbf{y}|$$

for all points \mathbf{x} and \mathbf{y} of \mathbb{R}^3 . Prove that, given any point \mathbf{z} of \mathbb{R}^3 satisfying $|\mathbf{z}| \leq 1$, there exists a point \mathbf{x} of \mathbb{R}^3 such that $|\mathbf{x}| \leq 1$ and $\mathbf{z} = 2\mathbf{x} - f(\mathbf{x})$.

- 9. (a) Let $\gamma:[0,1] \to \mathbb{C}$ be a closed curve in the complex plane (where $\gamma(0) = \gamma(1)$), and let w be a complex number that does not lie on the curve. Give the definition of the winding number $n(\gamma,w)$ of the closed curve γ about w.
 - (b) Let w be a complex number and, for each $\tau \in [0,1]$, let $\gamma_{\tau}: [0,1] \to \mathbb{C}$ be a closed curve in \mathbb{C} which does not pass through w. Suppose that the map sending $(t,\tau) \in [0,1] \times [0,1]$ to $\gamma_{\tau}(t)$ is a continuous map from $[0,1] \times [0,1]$ to \mathbb{C} . Using the Monodromy Theorem, or otherwise, prove that $n(\gamma_0, w) = n(\gamma_1, w)$.
 - (c) State and prove the Fundamental Theorem of Algebra.