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1. State and prove the Bolzano- Weierstrass Theorem.

2. Determine which of the following subsets of R? are open in R? and which are closed
in R?, giving reasons for your answers:—

(i) {(z,y) € R? : zy # 0},
(i) {(z,y) e R :z >0and z+y < 1},
(iii) {(z,y) € B :z >0 and 2* - y? =1}

(a) What is a metric space?
(b) What is an open set in a metric space? What is a closed set in a metric space?
(

¢) Prove that any union of open sets in a metric space is an open set. Prove also
that any finite intersection of open sets in a metric space is an open set.

(d) Let d be the distance function on the set R of all real numbers defined such
that d(z,y) = 1 if z # y and d(z,y) = 0 if z = y. Show that R, with this
distance function, is a metric space. Does there exist a subset of this metric
space which is not open? [Justify your answer.)
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4. (a) Let X and Y be metric spaces. What is meant by saying that a function

f: X = Y is continuous?

(b) What is meant by saying that a sequence z;,z2,3,... of points in a metric
space X converges to some point p of X7

(c) Let F be a closed set in a metric space X. Suppose that some sequence
T, T2, I3,...of points of F converges to some point p of X. Prove that p € F.

(d) Let X and Y be metric spaces, let f: X — Y be a continuous function from
X to Y, and let x;, T3, x3,... be a sequence of points of X that converges to
some point p of X. Prove that the sequence f(z), f(z2), f(23),... converges

to f(p).

(e) Let f: X — R be a real-valued function on a metric space X, and let x, T2, Z3, - ..
be a sequence of points of X that converges to some point p of X. Suppose
that |f(x;)| < 1 for all positive integers j. Explain why |f(p)| < 1.

. (a) What is a topological space?

(b} Let X1, Xs,...,X, be topological spaces. Give the definition of the product
topology on the Cartesian product X; x Xp x - -+ x X, of X, Xo,..., Xy, and
prove that the collection of open sets in X x X5 x - - - x X, satisfies the axioms
in the definition of a topological space.

(c) Prove that a function f: Z — X; x Xa X --- x X, from a topological space £
to the Cartesian product of topological spaces X1, X3, ..., X, is continuous if
and only if the components fy, fa, ..., fn of f are continuous, where

f(2) = (fi(2), fa(2), .. -, fu(2))
forall z € Z.

. (a) What is a compact topological space?

(b) Let f: X — R be a continuous real-valued function on a compact topological
space X. Prove that f is bounded above and below on X. Prove also that
there exist points u and v of X such that f(u) < f(z) < f(v) forall z € X.

(¢) Prove that every sequence of points in a compact metric space has a convergent
subsequence.
. (a) What is a connected topological space?

(b) Prove that a topological space X is connected if and only if every continuous
function f: X — Z from X to the set of integers is constant.

(¢) Let X be a topological space. Suppose that X = AU B, where A and B are
connected subsets of X, and AN B is non-empty. Prove that X is connected.

(d) What are the connected components of {(z,y,2) € R® : 22 + 32 # 1}7 [Justify
your answer.|
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8. (a) What is a norm on a real or complex vector space? What is a Banach space?

(b)

Let X be a topological space, and let C (X,R") denote the vector space consist-
ing of all bounded continuous functions from X to R*. The supremum norm
I f1} of such a function f is defined to be the least upper bound (or supremum)
of the values of |f(z)| for all points x of X. Prove that C(X,R*), with the
supremum norm, is a Banach space.

[You may use without proof the result that a function f: X — R is continuous
if and only if, given any point T of X and given any € > 0, there exists some
open set U, in X such that z € U, and |f(u) — f(z)| < eforallu€ Us]

9. (a) Let 1:[0,1] = C be a closed curve in the complex plane (where v(0) = (1)),

and let w be a complex number that does not lie on the curve. Give the
definition of the winding number n(~y,w) of the closed curve v about w.

(b} Let w be a complex number and, for each 7 € [0,1], let 7.2 [0, 1] — C be

(c)

a closed curve in C which does not pass through w. Suppose that the map
sending (¢,7) € [0,1]x[0,1] to ~+(t) is a continuous map from [0,1]x[0,1] to C.
Using the Monodromy Theorem, or otherwise, prove that n(o, w) = nl{y,w).
Let f:D — Chbea continuous map defined on the closed unit disk D in C,
and let w € C\ f(D). Prove that n(f © g, w) = 0, where 0:[0,1] = Cis the

parameterization of the unit circle defined by o(t) = exp(2xit), and n{foo,w)
is the winding number of f o o about w.

(d) Prove that there does not exist any continuous map r: D — 8D with the prop-

(e)

erty that r(z) = z for all z € 8D, where 8D denotes the boundary circle of
the closed unit disk D.

Prove the Brouwer Fized Point Theorem in Two Dimensions, which states that
any continuous map f: D — D from the closed unit disk D to itself has at
least one fixed point.
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