TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

SF Mathematics

Trinity Term 2000

JS Two Subject Moderatorship

SS Two Subject Moderatorship

Course 212

Wednesday, May 31

Sports Hall

14.00 - 17.00

Dr. D. R. Wilkins

Credit will be given for the best 6 questions answered. Logarithmic tables will be available in the examination hall.

- 1. State and prove the Bolzano-Weierstrass Theorem.
- 2. Determine which of the following subsets of \mathbb{R}^2 are open in \mathbb{R}^2 and which are closed in \mathbb{R}^2 , giving reasons for your answers:—
 - (i) $\{(x,y) \in \mathbb{R}^2 : xy \neq 0\},\$
 - (ii) $\{(x,y) \in \mathbb{R}^2 : x > 0 \text{ and } x + y \le 1\},\$
 - (iii) $\{(x,y) \in \mathbb{R}^2 : x > 0 \text{ and } x^2 y^2 = 1\}.$
- 3. (a) What is a metric space?
 - (b) What is an open set in a metric space? What is a closed set in a metric space?
 - (c) Prove that any union of open sets in a metric space is an open set. Prove also that any finite intersection of open sets in a metric space is an open set.
 - (d) Let d be the distance function on the set \mathbb{R} of all real numbers defined such that d(x,y)=1 if $x\neq y$ and d(x,y)=0 if x=y. Show that \mathbb{R} , with this distance function, is a metric space. Does there exist a subset of this metric space which is not open? [Justify your answer.]

- 4. (a) Let X and Y be metric spaces. What is meant by saying that a function $f: X \to Y$ is continuous?
 - (b) What is meant by saying that a sequence x_1, x_2, x_3, \ldots of points in a metric space X converges to some point p of X?
 - (c) Let F be a closed set in a metric space X. Suppose that some sequence x_1, x_2, x_3, \ldots of points of F converges to some point p of X. Prove that $p \in F$.
 - (d) Let X and Y be metric spaces, let $f: X \to Y$ be a continuous function from X to Y, and let x_1, x_2, x_3, \ldots be a sequence of points of X that converges to some point p of X. Prove that the sequence $f(x_1), f(x_2), f(x_3), \ldots$ converges to f(p).
 - (e) Let $f: X \to \mathbb{R}$ be a real-valued function on a metric space X, and let x_1, x_2, x_3, \ldots be a sequence of points of X that converges to some point p of X. Suppose that $|f(x_j)| \leq 1$ for all positive integers j. Explain why $|f(p)| \leq 1$.
- 5. (a) What is a topological space?
 - (b) Let X_1, X_2, \ldots, X_n be topological spaces. Give the definition of the *product* topology on the Cartesian product $X_1 \times X_2 \times \cdots \times X_n$ of X_1, X_2, \ldots, X_n , and prove that the collection of open sets in $X_1 \times X_2 \times \cdots \times X_n$ satisfies the axioms in the definition of a topological space.
 - (c) Prove that a function $f: Z \to X_1 \times X_2 \times \cdots \times X_n$ from a topological space Z to the Cartesian product of topological spaces X_1, X_2, \ldots, X_n is continuous if and only if the components f_1, f_2, \ldots, f_n of f are continuous, where

$$f(z) = (f_1(z), f_2(z), \dots, f_n(z))$$

for all $z \in Z$.

- 6. (a) What is a compact topological space?
 - (b) Let $f: X \to \mathbb{R}$ be a continuous real-valued function on a compact topological space X. Prove that f is bounded above and below on X. Prove also that there exist points u and v of X such that $f(u) \leq f(x) \leq f(v)$ for all $x \in X$.
 - (c) Prove that every sequence of points in a compact metric space has a convergent subsequence.
- 7. (a) What is a connected topological space?
 - (b) Prove that a topological space X is connected if and only if every continuous function $f: X \to \mathbb{Z}$ from X to the set of integers is constant.
 - (c) Let X be a topological space. Suppose that $X = A \cup B$, where A and B are connected subsets of X, and $A \cap B$ is non-empty. Prove that X is connected.
 - (d) What are the connected components of $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \neq 1\}$? [Justify your answer.]

- 8. (a) What is a norm on a real or complex vector space? What is a Banach space?
 - (b) Let X be a topological space, and let $C(X,\mathbb{R}^n)$ denote the vector space consisting of all bounded continuous functions from X to \mathbb{R}^n . The supremum norm ||f|| of such a function f is defined to be the least upper bound (or supremum) of the values of |f(x)| for all points x of X. Prove that $C(X,\mathbb{R}^n)$, with the supremum norm, is a Banach space. [You may use without proof the result that a function $f: X \to \mathbb{R}^n$ is continuous if and only if, given any point x of X and given any $\varepsilon > 0$, there exists some open set U_x in X such that $x \in U_x$ and $|f(u) f(x)| < \varepsilon$ for all $u \in U_x$.]
- 9. (a) Let $\gamma:[0,1] \to \mathbb{C}$ be a closed curve in the complex plane (where $\gamma(0) = \gamma(1)$), and let w be a complex number that does not lie on the curve. Give the definition of the winding number $n(\gamma,w)$ of the closed curve γ about w.
 - (b) Let w be a complex number and, for each $\tau \in [0,1]$, let $\gamma_{\tau}:[0,1] \to \mathbb{C}$ be a closed curve in \mathbb{C} which does not pass through w. Suppose that the map sending $(t,\tau) \in [0,1] \times [0,1]$ to $\gamma_{\tau}(t)$ is a continuous map from $[0,1] \times [0,1]$ to \mathbb{C} . Using the Monodromy Theorem, or otherwise, prove that $n(\gamma_0, w) = n(\gamma_1, w)$.
 - (c) Let $f: D \to \mathbb{C}$ be a continuous map defined on the closed unit disk D in \mathbb{C} , and let $w \in \mathbb{C} \setminus f(D)$. Prove that $n(f \circ \sigma, w) = 0$, where $\sigma: [0, 1] \to \mathbb{C}$ is the parameterization of the unit circle defined by $\sigma(t) = \exp(2\pi i t)$, and $n(f \circ \sigma, w)$ is the winding number of $f \circ \sigma$ about w.
 - (d) Prove that there does not exist any continuous map $r: D \to \partial D$ with the property that r(z) = z for all $z \in \partial D$, where ∂D denotes the boundary circle of the closed unit disk D.
 - (e) Prove the Brouwer Fixed Point Theorem in Two Dimensions, which states that any continuous map $f: D \to D$ from the closed unit disk D to itself has at least one fixed point.