Spectral theorem. Suppose A is real and symmetric. Then there is an orthogonal matrix B such that BtAB = B-1AB = diagonal. Proof. We use induction. If A = [a] is 1×1 , then B = [1] will do since $B^{\dagger}AB = [a]$ is diagonal. Assume the result for $n \times n$. Let A be (n+1) x(n+1) and pick an eigenvector \vec{Y}_1 with eigenvalue λ_1 , say. Extend v_1 to a basis and use Gram-Schmidt to get an <u>orthonormal</u> basis $w_1, w_2, ..., w_n$ with $w_1 = \frac{1}{\|v_1\|} \vec{V}_1$. Thus \vec{w}_n is an eigenvector as well. We claim $B^{\dagger}AB = B^{-1}AB = \begin{bmatrix} \frac{2}{10} & 0 & ... & 0 \\ 0 & P \end{bmatrix}$ when $B = [\vec{w}_i & ... & \vec{w}_n]$. In fact, we know Bt = B-1 by orthonormality and also $(B^{\dagger}AB)\vec{e}_{1} = B^{\dagger}A\vec{w}_{1} = B^{\dagger}(\lambda_{1}\vec{w}_{1}) = B^{\dagger}(\lambda_{1}B\vec{e}_{1}) = \lambda_{1}\vec{e}_{1}$, While BtAB is symmetric since (BtAB)t = BtAB B. Then P is symmetric as well, so we can use the induction hypothesis to get Q orthogonal with Qt PQ = diagonal. This implies that $\begin{bmatrix} 1 & 7^t & 0 \\ \hline 0 & P \end{bmatrix} \begin{bmatrix} 1 \\ \hline Q \end{bmatrix} = \begin{bmatrix} 3 \\ \hline 0^t PQ \end{bmatrix} = \text{diagonal}$ so Rt Bt AB R = diagonal (BR)^t. A. (BR) = diagonal. It remains to check BR is orthogonal. In fact, (BR) BR = Rt Bt BR = Rt R -- by above and R is orthogonal (since the columns of R are mutually orthogonal unit vectors).

Application (Quadratic forms) Consider a quadratic function Q in n variables $Q(X_1,...,X_n) = \sum_{i \in j} a_i, X_i X_j$. This arises from bilihear forms $\langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^{\infty} a_{ij} x_{i} y_{j}$ by taking $\vec{x} = \vec{y}$. We need to be careful with the off-diagonal terms: an X, y, + a, 2 X, y, + a, 2 X, y, + a, 2 X, y, = 3 a, X, 2 + 2a, 2 X, X, 2 + a, 2 X, 2 when A is symmetric. Thus, $Q(x_1,...,x_n) = \sum_{i \leq j} a_i x_i x_j = \overrightarrow{X}^t A \overrightarrow{X}$ with $a_i = \begin{cases} \frac{1}{2} & \text{well. of } x_i x_j \\ \text{well. of } x_i^2 & \text{if } i = j \end{cases}$ Example Consider the quadratic equation Xy = 1. We can write $Q(x,y) = Xy = \overrightarrow{X}^{\dagger} A \overrightarrow{X}$ with $\overrightarrow{X} = \begin{bmatrix} x \\ y \end{bmatrix}$ and $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$. Then $B^{t}AB = B^{1}AB = \begin{bmatrix} 1/2 \\ -1/2 \end{bmatrix}$ is diagonal. If we change variables $\overline{X} = B\overline{y}$ we get $\vec{x}^t A \vec{x} = (B\vec{y})^t A (B\vec{y}) = \vec{y}^t (\underline{R}^t A \underline{R}) \vec{y}$ so we get a quadratic with diagonal entires. In this case $x^t A \overrightarrow{x} = \frac{1}{2} \cancel{y}_1^2 - \frac{1}{2} \cancel{y}_2^2$ with $\overrightarrow{y} = \overrightarrow{B}^t \overrightarrow{x}$. $Xy=1 \quad xy=1 \quad$

More generally, a quadratic $\vec{x}^t A \vec{x}$ with A symmetric can be expressed as $(B\vec{y})^{\dagger} A(B\vec{y}) = \vec{y}^{\dagger} (B^{\dagger} AB) \vec{y} = \vec{\lambda} \lambda_i y_i^2$, where B is orthogonal and Ti = the eigenvalues. Example. Consider $x^2 - y^2 + z^2 - 2xy - 2xz - 2yz = 1$. In this case, $A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$. The eigenvalues are $\lambda = 1$. $\lambda = 1$, $\lambda = 2$ and $\lambda = -2$ with eigenvectors each of those by its length to get $\begin{bmatrix}
1 \\
1
\end{bmatrix}$ We divide $\begin{bmatrix}
1 \\
1
\end{bmatrix}$ The properties of the second of the se $B = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ -1/\sqrt{3} & 0 & 2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \end{bmatrix} \Rightarrow B^{t}AB = B^{-1}AB = \begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & 1/\sqrt{6} \end{bmatrix}$ This proves: we can change variables by $\vec{X} = \vec{B}\vec{y}$ to write $x^2-y^2+z^2-2xy-2xz-2yz=\frac{2}{51}\lambda_1y_1^2=y_1^2+2y_2^2-2y_3^2$ Thus, the original equation becomes $y_1^2 + 2y_2^2 - 2y_3^2 = 1$ and 1-sheeted hyperboloid (that does not meet the y_3 -axis).

The mannew variables y_1, y_2, y_3 can be determined as $\vec{X} = \vec{B}\vec{y}$ or $\vec{Y} = \vec{B} \cdot \vec{X} = \vec{B} \cdot \vec{X}$ or $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{6} & 0 & 1/\sqrt{2} \\ 1/\sqrt{6} & 1/\sqrt{6} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. We have actually shown $\begin{array}{rcl} x^{2}-y^{2}+z^{2}-2xy-2xz-2yz&=&y^{2}+2y^{2}-2y^{3}\\ &=&\left(\frac{x-y+z}{\sqrt{3}}\right)^{2}+2\left(\frac{-x+z}{\sqrt{2}}\right)^{2}-2\left(\frac{x+2y+z}{\sqrt{6}}\right)^{2}.\end{array}$

Positive definite symmetric We say A is positive definite symmetric, if $A^t = A$ (symmetric) and $\langle \vec{x}, \vec{x} \rangle = \vec{X}^t A \vec{x}$ is positive for all $\vec{x} \neq 0$. Theorem (Tests for positive definiteness) Suppose A is symmetric & real.
Then A is positive definite if and only if: 1) Definition -- Xt AX is possible for all X = 0 2) Eigenvalues -- 770 for all eigenvalues 7 of A 3) Sylvester's criterion the determinants of all kxk upper left submatrices are all positive. Example 1. Let $A = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. To check it is possible, we note that 3>0 and det A=3.4-1>0. Alternatively, we can compute eigenvalues Example 2. Let $A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 5 \end{bmatrix}$ with x some parameter.

The eigenvalues are difficult to find explicitly. Using Sylvester's criterior -- 3>0 and det $\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} = 6-1>0$ so we need det A 20 as well. In this case det $A = 5 \times -5.15 = 5 \times -15$ so A is possible definite (x > 15)

Proof: ①-② equivalent. We need $\vec{x}^t A \vec{x}$ positive $\forall \vec{x} \neq 0$. Let $\vec{x} = \vec{B} \vec{y}$ with \vec{B} orthogonal and $\vec{B}^t A \vec{B} = \vec{B}^t A \vec{B} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$. We get $\vec{X}^{\dagger} A \vec{X} = \vec{y}^{\dagger} (B^{\dagger} A B) \vec{y} = \sum \lambda_i y^2$. This is possible $\forall \vec{y} \neq 0$ if and only if $\lambda_i > 0$ $\forall i$. \square

Example 3. Let
$$A = \begin{bmatrix} 2 & x & 0 \\ x & x+4 & x-4 \\ 0 & x-4 & x+1 \end{bmatrix}$$
. In this case,
(a) det $[2]$ -- is positive x .
(b) det $[2]$ $x = 2x + 8 - x^2$ should be positive.
Let's factor -- $2x + 8 - x^2 = -(x^2 - 2x - 8)$
 $= -(x - 4)(x + 2)$
(c) det $A = 0$
 $A = -(x - 4)(x + 2)$
Roots are -- $x = 1, 4, 6$
So det $A = -(x - 1)(x - 4)(x + 6)$

Conclusion: A pos. def. (=) 1< x < 4.

Theorem (Tests for being positive definite)
If A is symmetric, then A is pos. def. if and only if 1 Definition: We have $\vec{x}^t A \vec{x} > 0$ for all $\vec{x} \neq 0$ 2 <u>Eigenvalues</u>: We have 7>0 for each eigenvalue 7. 3 Sylvester's criterion. We have det $A_k > 0$ for each $k \times k$ upper left submatrix A_k . Proof of $0 \rightleftharpoons 2$. Since A is symmetric, there exists B orthogonal with $B^{t}AB = \begin{bmatrix} \lambda_{1} \\ \lambda_{n} \end{bmatrix}$ and $\vec{x} = B\vec{y}$ gives $\vec{x}^{t}A\vec{x} = \vec{y}^{t}B^{t}AB\vec{y} = Z\lambda_{i}\vec{y}^{2}$. Proof of $(1) \Rightarrow (3)$. Suppose $X^{\dagger}AX > 0$ for all $X \neq 0$.

This means $Z = a_{ij} \times x_{i} \times x_{j} > 0$ for nonzero X.

We look at the case $X_{k+1} = X_{k+2} = ... = X_{n} = 0$. We get Zai; xix; > 0 for nonzero x This means kxk upper left submatrix is pos. def. Its eigenvalues are positive by (2) => det Ak>0. Proof of 3 => 1 Assume det Ax >0 Vk. We need to show A pos. def. We use induction on the size of A. If A= is 1×1, $x^{t}Ax = Ax^{2}$ it a product of scalars and it's positive (A > 0). Suppose the result holds for hxn. We prove it for (n+1)x(n+1) matrices. Write $A = \begin{bmatrix} A_{n} & \overrightarrow{v} \\ \overrightarrow{v}t & 7 \end{bmatrix}$ for some $\overrightarrow{v} \in \mathbb{R}^{n}$ and $\overrightarrow{\lambda} \in \mathbb{R}$. Change variables to eliminate \vec{v} . Take $\vec{B} = \begin{bmatrix} \frac{\vec{I}_n \times \vec{X}}{\sqrt{1}} \end{bmatrix}$ with the vector & to bell found. Then $B^{t}AB = \begin{bmatrix} \overline{h} & 0 \\ x^{t} & 1 \end{bmatrix} \begin{bmatrix} A_{1} & v \\ v^{t} & \lambda \end{bmatrix} \begin{bmatrix} \overline{h} & x \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} A_{1} & \overline{v} \\ x & x \end{bmatrix} \begin{bmatrix} \overline{h} & x \\ 0 & 1 \end{bmatrix}$

Then
$$8^{t}AB = \begin{bmatrix} An & O \\ O & \mu \end{bmatrix}$$
 for some scalar μ . However, μ det μ and μ and μ and μ are μ and μ and μ are μ are μ and μ are μ are μ and μ are μ are μ and μ are μ

with $x_0^{\dagger}b = b^{\dagger}x_0 = axd - 2x_0^{\dagger}Ax_0$. This gives

 $f(\bar{x}_0) = -\frac{1}{2} x_0^{\dagger} b + b^{\dagger} x_0 + C = -x_0^{\dagger} A x_0 + C$ We then compute $f(x) - f(x_0) = \underbrace{x^t Ax + b^t x}_{t} + y_0^t Ax_0 = \underbrace{x^t Ax + b^t x}_{t} + y_0^t$ $= X^{t}AX - X_{o}^{t}AX - X_{o}^{t}AX_{o} + X_{o}^{t}AX_{o}$ with equality if and only if $X=x_0$. Here, the middle equality holds because $x_0^t Ax$ is 1x1 so $x_0^t Ax = (x_0^t Ax)^t = x^t Ax_0 = -\frac{1}{2}x^t b = -\frac{1}{2}b^t x_0$ Application 2 Min/max of quadratics over the unit sphere IIxII=1. Suppose A is symmetric and consider $f(\vec{x}) = \vec{X}^t A \vec{x}$. Then its min/max values over the sphere ||x||=1 are the min/max eigenvalues of A and those are attained along eigenvectors. Proof. We change variables as usual, $\vec{X} = \vec{B}\vec{y}$ with $\vec{B}^{\dagger} A \vec{B} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$.

Order these as $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ for simplicity. Then $f(\bar{x}) = x^t Ax = y^t (B^t AB)y = \sum_{i=1}^n \lambda_i y_i^2$ and 1 = ||x|| = ||By|| = ||y||. This implies $f(x) = \sum \gamma_i y_i^2 \leq \sum \gamma_n y_i^2 = \gamma_n$ and $f(x) = \sum \gamma_i y_i^2 \geq \sum \gamma_i y_i^2 = \gamma_i$.

Moreover, equality holds when $\vec{y} = \vec{e}_n$ and $\vec{x} = \vec{k}\vec{e}_n = n$ th eigenvector or $\vec{y} = \vec{e}_i$ and $\vec{x} = \vec{v}_i$, respectively. Example. Min/max of $f(x,y) = 3x^2 + 4xy + 6y^2$, over $x^2 + y^2 = 1$. This is $f(x_{17}) = \overrightarrow{X}^{t} \overrightarrow{A} \overrightarrow{X}$ with $A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$. Eigenvectors are

 $V_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ with $\lambda_1 = 2$ and $v_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ with $\lambda_2 = 7$.

The min value is $f(\frac{-2}{5},\frac{1}{5}) = 3, \pm \frac{8}{5} - \frac{8}{5} + \frac{6}{5} = 2 = \lambda_1$
The max value is $f(\frac{1}{5},\frac{2}{5}) = 3 \cdot \frac{1}{5} + \frac{8}{5} + \frac{24}{5} = 7 = \lambda_2$.
Application 3. Second derivative test
Consider $f(x_1,,x_n)$, a function of n variables.
Its directional derivative is
Duf = rate at which f changes in the direction of (unit) vector \vec{u} = $\nabla f \cdot \vec{u} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}$. u_i and the second derivative is
Du Duf = $\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} [D_{u}f] \cdot u_{i}$
$= \frac{2}{2\pi} \frac{\partial}{\partial x_i} \left[\frac{2}{2\pi} \frac{\partial f}{\partial x_i} u_i \right] \cdot u_i = \frac{2}{2\pi} \frac{\partial}{\partial x_i} \frac{\partial^2 f}{\partial x_i} \frac{\partial^2 f}{\partial x_i} \frac{\partial}{\partial x_i} \frac{\partial^2 f}{\partial x_i} \frac{\partial}{\partial x_i} \frac{\partial x_i} \frac{\partial}{\partial x_i} \frac{\partial}{\partial$
with $A = Hessian$ matrix and $ais = \frac{\partial^2 f}{\partial x_i \partial x_j}$
We can classify critical points as follows.
We can classify critical points as follows. (1) If A has post eigenvalues, ut Au 20 for all i
so Du Duf 2,0 for all i
so Du Duf 7,0 for all û so f is convex in u-direction so we have a local min.
2 If A has neg eigenvalues, we get a local max
3 If A has some pos. & some neg. eigenvalues, we get a saddle point.
When $n=2$, the matrix is $A = \left[\frac{f_{XX}}{f_{YX}}\right]$.