$$\frac{\text{Recurrence} / \text{Recursive velations} ; involve sequences X_0, X_1, X_2, \dots }{\text{for article each terms in depends on the previous terms. The standard example: 1,1,2,3,5,8, \dots Fiberacci sequence $X_{ne} = X_{n-1} + X_{n-2} + X_{ne} +$$$

1 ~ **A**

Powers of diagonal matrices. Suppose
$$A = \begin{bmatrix} d_{i} d_{i} \\ d_{i} \end{bmatrix}$$
 is
diagonal. An example is $A = \begin{bmatrix} d_{i} \\ d_{i} \end{bmatrix}$ and $\begin{bmatrix} d_{i} \\ d_{i} \end{bmatrix} \begin{bmatrix} v_{i} \\ v_{i} \end{bmatrix} = \begin{bmatrix} d_{i} \\ d_{i} \\ d_{i} \end{bmatrix}$
Left mult by A sends x_{i} to div. This, suggests
 $A^{k} = \begin{bmatrix} d_{i}^{k} \\ d_{k}^{k} \end{bmatrix}$ and we can prove the by induction.
There $A^{k} = \begin{bmatrix} d_{i}^{k} \\ d_{k}^{k} \end{bmatrix}$ and we can prove the by induction.
There A^{k} is diagonal with diagonal entries $d_{i}, d_{i}^{k}, ..., d_{n}$
then A^{k} is diagonal with diagonal entries $d_{i}^{k}, d_{i}^{k}, ..., d_{n}^{k}$.
Pore Since $A = \begin{bmatrix} d_{i} \\ d_{n} \end{bmatrix}$, we have $A\vec{e}_{i} = d_{i}\vec{e}_{i}$ for each i .
We need to show $A^{k} = \begin{bmatrix} d_{i} \\ d_{k} \end{bmatrix}$ includes for some k . Then
 $A^{k+1}\vec{e}_{i} = A \cdot A^{k}\vec{e}_{i} = A \cdot (d_{i}\vec{e}_{i}) = d_{k}^{k}(A\vec{e}_{i}) = d_{k}^{k+1}\vec{e}_{i}$.
South that $B^{*}AB = D$ is diagonal. In that case, we say A is
diagonallisable. We can compute D^{k} . To compute A^{k} , note that
 $D^{k} = (B^{n}AB)^{k} = B^{*}AB \cdot B^{*}AB \cdot B^{*}AB \cdot \dots B^{*}AB$
 $\implies D^{k} = B^{*}A^{k}B$.
This proves the formula
 $A^{k} = B \cdot D^{k} \cdot B^{*}$.
Then $B^{*}AB = \begin{bmatrix} d_{i} \\ d_{i} \\ d_{i} \end{bmatrix}$ is diagonal and $B = \begin{bmatrix} v_{i} \\ v_{i} \\ v_{i} \end{bmatrix}$.

Definition We say
$$\vec{v}$$
 is an eigenvector of A with
eigenvelue λ , if \vec{v} is nonzero and $A\vec{v} = \lambda\vec{v}$].
To diagonalise A , if possible, we need to find the eigenvectors
 $v_1, v_{2,..., V_n}$ and merge them into a matrix B to get B^*AB diagonal
(Step 1. Finding the eigenvectors \overline{A} .)
We need to solve $A\vec{v} = \lambda\vec{v}$ or $(A \cdot \lambda I)\vec{v} = 0$, where \vec{v}
is nonzero. We thus need $(A \cdot \lambda I)\vec{v} = 0$ to find the only
solution. If $A \cdot \lambda I$ is invertible, then $\vec{v} = 0$ is the only
solution, We thus need $A \cdot \lambda I$ to ugt be invertible (so the only
solution, we thus need $A \cdot \lambda I$ is not invertible, hence
if and only if $A \cdot \lambda I$ is not invertible, hence
if and only if $A \cdot \lambda I = 0$ like (all
 $f(\Lambda) = \det(A \cdot \lambda I) = 0$. We call
 $f(\Lambda) = \det(A - \lambda I) = 0$. We get
det $(A - \lambda I) = 0$. We get
det $(A - \lambda I) = 0$. We get
 $det (A - \lambda I) = 0$. We get
 $det (A - \lambda I) = 0$. We get
 $det (A - \lambda I) = 0$. We get
 $det (A - \lambda I) = -\lambda^2 - \lambda^2 - 12$
 $= \lambda^2 - 3\lambda - 10$
and the eigenvalues are $\lambda = 5$ and $\lambda = -2$. To find
the eigenvalues are $\lambda = 5$ and $\lambda = -2$. To find
the eigenvalues $\Delta v = \lambda \vec{v}$ for each λ separately.

Proof
$$f(x) = det \begin{bmatrix} a + b \\ c & d + b \end{bmatrix} = (a + \lambda) (d + \lambda) - bc = ad - a\lambda - d\lambda + \lambda^{2} - bc$$

 $= \lambda^{2} - (a + d)\lambda + ad - bc.$
Example 1 (A diagonalisable matrix) Let $A = \begin{bmatrix} 4 & -2 \\ 1 & 4 \end{bmatrix}$.
Eigenvalues $\lambda \longrightarrow$ roots of $f(\lambda) = bet(A - \lambda I) = \lambda^{2} - 5\lambda + 6 = (\lambda - 2)(\lambda - 3)$
and thus $\lambda_{1} = 2$ and $\lambda_{2} = 3$.
Eigenvectors $\vec{v} \longrightarrow$ selections $f(A - \lambda I) \vec{v} = 0$.
(A - 3I) $\vec{v} = 0$
 $\begin{bmatrix} 2 & -2 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$
 $\begin{bmatrix} (A - 2I) \vec{v} = 0 \\ (A - 2I) \vec{v} = 0 \end{bmatrix}$
 $2x - 2y = 0, x - 2y = 0$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $x - 2y = 0, x - 2y = 0^{2}$
 $y = 2 \begin{bmatrix} 2 & 1 \\ 4 & 4 \end{bmatrix}$
 $x -$

Proof.
$$f(\lambda) = det(A - \lambda I) = det \begin{bmatrix} a_{11} - \lambda & \star & \cdots & \star \\ & a_{22} - \lambda & \ddots & \star \\ & & a_{nn} - \lambda \end{bmatrix} = (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda) \mathbb{Z}$$

 $txample 2. (A non - diagonalisable matrix) Let A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$. Then eigenvalues 7 upper triangular so 7=2,2. Eigenvectors \vec{v} we solve $(A - \lambda I)\vec{v} = 0$ or $(A - 2I)\vec{v} = 0$. In this case, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ so y = 0and $\vec{v} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$. We get scalar multiples of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Thus, A does not have 2 lin. indep eigenvectors and A is not diagonalisable. We get one eigenvalue and one eigenvector essentially. Null space of a matrix Eigenvectors \vec{V} satisfy $(A-\lambda I)\vec{V} = 0$ so \vec{V} belongs to the null space of $A-\lambda I$. There is a systematic method for finding the null space of a matrix. Step 1. The row reduction to find the reduced row echelon form. If the matrix is A and R= Ek-EzEnA is the RREF, then $A\vec{v} = 0 \iff \vec{E_k} - \vec{E_2} \vec{E_1} \vec{A} \vec{v} = 0 \iff \vec{R} \vec{v} = 0$. This shows that A, R have the same null space. Step 2.] We compute the null space of R by eliminating the pivot variables.

Theorem (Distinct eigenvalues) Suppose A is
$$n \times n \cdot MHMM$$

Eigenvectors corresponding to distinct eigenvectues are lin. Independent.
In particular, (A has n) \Rightarrow (A has n lin.) \Rightarrow (A is diagonalisable).
However, we don't need n eigenvectues to ensure A is diagonalisable.
Prof. We use induction. Suppose $\vec{V}_1, ..., \vec{V}_k$ are eigenvectors with $h_1, ..., h_k$
eigenvalues difficult. When $k=4$, we get one eigenvectors with $h_2, ..., h_k$
eigenvalues difficult. When $k=4$, we get one eigenvectors and $c_1\vec{V}_1 = 0$
implies $c_1=0$ since $\vec{V}_1 \neq 0$ by definition. This settles $k=4$.
Assume for k and $c_1\vec{V}_1 + c_2\vec{V}_2 + ... + c_k\vec{V}_k + c_{k+1}\vec{V}_{k+1} = 0$.
Multiplying by A_{k+1} gives $c_1A_k \cdot \vec{V}_1 + c_2A_k \cdot \vec{V}_2 + ... + c_kA_k \cdot \vec{V}_k + c_{k+1}A_{k+1}\vec{V}_{k+1} = 0$.
We then get $c_1(A_1 - A_{k+1})\vec{V}_1 + c_2A_k \cdot \vec{V}_2 + ... + c_kA_{k+1}\vec{V}_k + c_{k+2}A_{k+1}\vec{V}_{k+1} = 0$.
Returning to \bigoplus gives $(k_{11}\vec{V}_{k+1} = 0$ is $(k_{11} - k_{k+1})\vec{V}_2 + c_k(A_{1-} - k_{k+1})\vec{V}_k = 0$.
Returning to \bigoplus gives $(k_{11}\vec{V}_{k+1} = 0$ is $(k_{1-} - k_{k-1})\vec{V}_k = 0$.
Returning to \bigoplus gives $(k_{11}\vec{V}_{k+1} = 0$ is $(k_{1-} - k_{k-1})\vec{V}_k = 0$.
Returning to \bigoplus gives $(k_{11}\vec{V}_{k+1} = 0$ is $(k_{1-} - k_{k-1})\vec{V}_k = 0$.
Returning to \bigoplus gives $(k_{11}\vec{V}_{k+1} = 0$ is $(k_{1-} - k_{k-1})\vec{V}_k = 0$.
Returning to \bigoplus gives $(k_{11}\vec{V}_{k+1} = 0$ is $(k_{1-} - k_{k-1})\vec{V}_k = 0$.
Returning to \bigoplus gives $(k_{11}\vec{V}_{k+1} = 0$ is $(k_{1-} - k_{1-})\vec{V}_k = 0$.
Returning to \bigoplus gives $(k_{11}\vec{V}_{k+1} = 0$ is $(k_{1-} - k_{1-})\vec{V}_k$.
In particular, there exists B with $B^{-1}AB = [1 + 2 - 3]$. We don't need to compate eigenvectors in this case.

Example Consider
$$A = \begin{bmatrix} 3 & 4 & -3 \\ 4 & 3 & -3 \\ 4 & 4 & -1 \end{bmatrix}$$
 Is A diagonalisable?
Figurables $\longrightarrow f(\lambda) = det (\lambda - \lambda \Sigma) = det \begin{bmatrix} 3 - \lambda & 4 & -3 & 3 - \lambda & 4 \\ 4 & 3 - \lambda & -3 & 4 & 3 - \lambda \\ 4 & 4 & -4 & \lambda & 1 & 1 \end{bmatrix}$
so $f(\lambda) = (3 - \lambda)^2 (-4 - \lambda) - 3 - 3 + 3(3 - \lambda) + 3(3 - \lambda) + 1(\lambda)$ \oplus \oplus \oplus
 $= (9 - 6\lambda + \lambda^2)(-4 - \lambda) - 6 + 18 - 6\lambda + 4 + \lambda$
 $= -9 - 9\lambda + 6\lambda + 6\lambda^2 - \lambda^2 - \lambda^2 + 42 - 5\lambda + 4$
 $= -\lambda^3 + 5\lambda^2 - 8\lambda + 4$.
Passible racts $\longrightarrow \lambda = \pm 4, \pm 2, \pm 4$ are only possible rational racts
 $f(-1) = 1 + 5 + 8 + 4 = 0$... so $\lambda = 2$ is a ract.
 $f(2) = -8 + 20 - 46 + 4 = 0$... so $\lambda = 2$ is a ract.
Once we have a ract we can factor. Since $\lambda = 1$ is a ract,
 $\lambda - 4$ is a factor se $f(\lambda) = (\lambda - 1)g(\lambda)$. We find $g(\lambda)$ is $\frac{1}{4\lambda^2} - 4\lambda - 4$
 $\frac{-\lambda^2 + 4\lambda - 4}{-4\lambda + 4}$
 $\frac{-\lambda^2 + 4\lambda - 4}{-4\lambda + 4}$
This computation shows $f(\lambda) = (\lambda - 1)(-\lambda^2 + 4\lambda = 4)$
 $= (4 - \lambda)(\lambda^2 - 4\lambda + 4)$
 $= (4 - \lambda)(\lambda - 2)^2$.

Egenvectors) Once we know
$$\lambda$$
, we compute $N(A - \lambda I)$. In this case
 $N(A - I) = Span \left\{ \begin{bmatrix} 1\\ 1 \end{bmatrix} \right\}$ and $N(A - 2I) = Span \left\{ \begin{bmatrix} -i \\ 0 \end{bmatrix} \right\}$.
We get 3 eigenvectors, they are lin help. by the theorem about
distinct eigenvalues \Rightarrow $B = \begin{bmatrix} 1 & -i & 3 \\ 1 & 0 & -i \end{bmatrix}$ implies $B^*AB = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$.
Complex eigenvalues/eigenvectors. It may happen that $det(A - \lambda S) = O$
has complex roots. We can handle those in the same may. As an
example, take $A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}$, for instance.
This does not have real eigenvalues! Namels,
 $f(\lambda) = \lambda^2 - (trA)\lambda r detA = \frac{\lambda^2 - 4\lambda + 4}{2} + 9 = (\lambda - 2)^2 + 3^2$.
Eigenvalues satisfy $(\lambda - 2)^2 = -3^2 \Rightarrow \lambda - 2 = \pm 3i \Rightarrow \frac{\lambda - 24 + 3i}{2}$.
Eigenvectors. When $\lambda = 2x + 3i$, we get
 $A - \lambda I = \begin{bmatrix} -3i & -3 \\ 3 & -3i \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -3i \\ -3i & -3i \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -i \\ 0 & 0 \end{bmatrix}$
so $x - iy = O$ and $x = iy$ and $v = \begin{bmatrix} iy \\ 2 \end{bmatrix} = 5\begin{bmatrix} i \\ 1 \end{bmatrix}$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \operatorname{Recursive} & \operatorname{rekations} - A & \operatorname{typical} & \operatorname{example} \end{array} \end{array} \\ \begin{array}{c} \operatorname{Suppose} & \left\{ \begin{array}{c} x_{n} = & 4 & x_{n-1} - 2 & y_{n-1} \\ y_{n} = & x_{n-1} + y_{n-1} \end{array} \right\} & \operatorname{with} & \left\{ \begin{array}{c} x_{n} = 4 \end{array} \right\} \end{array} \\ \begin{array}{c} \operatorname{We} & \operatorname{need} & \operatorname{to} & \operatorname{dekrmine} & x_{n} & y_{n} & \operatorname{for} & \operatorname{all} n & \operatorname{Write} \end{array} \\ \begin{array}{c} \operatorname{We} & \operatorname{need} & \operatorname{to} & \operatorname{dekrmine} & x_{n} & y_{n} \end{array} & \left[\begin{array}{c} 4 - 2 \\ 1 & 1 \end{array} \right] \left[\begin{array}{c} x_{n-1} \end{array} \right] = A \cdot \overline{U}_{n,n} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & \overline{U}_{n} = \left[\begin{array}{c} 4 x_{n-1} - 2 y_{n-1} \\ x_{n-1} + y_{n-1} \end{array} \right] = \left[\begin{array}{c} 4 - 2 \\ 1 & 1 \end{array} \right] \left[\begin{array}{c} y_{n-1} \end{array} \right] = A \cdot \overline{U}_{n,n} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & \overline{U}_{n} = \left[\begin{array}{c} 4 x_{n-1} - 2 y_{n-1} \\ x_{n-1} + y_{n-1} \end{array} \right] = \left[\begin{array}{c} 4 - 2 \\ 1 & 1 \end{array} \right] \left[\begin{array}{c} y_{n-1} \end{array} \right] = A \cdot \overline{U}_{n,n} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & \overline{U}_{n} = \left[\begin{array}{c} 4 x_{n-1} - 2 y_{n-1} \\ x_{n-1} + y_{n-1} \end{array} \right] = \left[\begin{array}{c} 4 - 2 \\ 1 & 1 \end{array} \right] \left[\begin{array}{c} y_{n-1} \end{array} \right] = A \cdot \overline{U}_{n,n} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & \overline{U}_{n} = \left[\begin{array}{c} 4 x_{n-1} - 2 y_{n-1} \\ x_{n-1} + y_{n-1} \end{array} \right] = \left[\begin{array}{c} 4 - 2 \\ 4 & x_{n-1} \end{array} \right] \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & \overline{U}_{n} = \left[\begin{array}{c} A \cdot \overline{U}_{n,n} \\ x_{n-1} + y_{n-1} \end{array} \right] = \left[\begin{array}{c} A - 2 \\ A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & \overline{U}_{n} = \left[\begin{array}{c} A \cdot \overline{U}_{n,n} \\ x_{n-1} + y_{n-1} \end{array} \right] = \left[\begin{array}{c} A \cdot \overline{U}_{n,n} \\ A - \left[\begin{array}{c} A - 2 \\ A \end{array} \right] \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & \overline{U}_{n} = \left[\begin{array}{c} A \cdot \overline{U}_{n,n} \\ A - \left[\begin{array}{c} A - 2 \\ A \end{array} \right] \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & \overline{U}_{n} = \left[\begin{array}{c} A \cdot \overline{U}_{n,n} \\ A - \left[\begin{array}{c} A - 2 \\ A \end{array} \right] \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} = & A \cdot \overline{U}_{n,n} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$$

$$\begin{bmatrix} X_{n} \\ y_{n} \end{bmatrix} = \tilde{u}_{n} = A^{n} \cdot \tilde{u}_{0} = \begin{bmatrix} 2 \cdot 3^{n} - 2^{n} & 2^{n+1} - 2 \cdot 3^{n} \\ 3^{n} - 2^{n} & 2^{n+1} - 3^{n} \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} X_{n} \\ y_{n} \end{bmatrix} = \begin{bmatrix} 6 \cdot 3^{n} - 2^{n+1} \\ 3^{n+1} - 2^{n+1} \end{bmatrix} .$$

Theorem (Null spaces increase & eventually stabilize) Suppose A
is a square matrix with eigenvalue A. Then the null spaces

$$N(A-\lambda I)$$
, $N(A-\lambda I)^2$, $N(A-\Delta I)^3$, ... are increasing and eventually
itabilize in the serve that the there is there in integer & with
 $N(A-\lambda I)^2 = N(A-\lambda I)^k$ for all $j_7 k$.
Proof. One has $\vec{v} \in N(A-\lambda I)^{j_1} \Rightarrow (A-\lambda I)^{j_2} \vec{v} = O$
 $\Rightarrow (A \cdot X I) (A - \lambda I)^{j_1} \vec{v} = O$
 $\Rightarrow (A \cdot X I) (A - \lambda I)^{j_1} \vec{v} = O$
 $\Rightarrow V \in N(A - \lambda I)^{j_1} \vec{v} = O$
 $\Rightarrow V \in N(A - \lambda I)^{j_1} \vec{v} = O$
 $\Rightarrow V \in N(A - \lambda I)^{j_1} \vec{v} = O$
 $\Rightarrow V \in N(A - \lambda I)^{j_1} \vec{v} = O$
 $\Rightarrow V \in N(A - \lambda I)^{j_1} \vec{v} = O$
 $\Rightarrow V \in N(A - \lambda I)^{j_1} \vec{v} = O$
 $\Rightarrow V \in N(A - \lambda I)^{j_1} \vec{v} = O$
 $\Rightarrow N(A - \lambda I)^{j_1} \vec{v} = N(A - \lambda I)^{j_1} \vec{v} \vec{v} = O$
 $\Rightarrow N(A - \lambda I)^{j_1} \vec{v} = N(A - \lambda I)^{j_1} \vec{v} \vec{v} = O$
 $\Rightarrow (A - \lambda I)^{j_1} \vec{v} = N(A - \lambda I)^{j_1} \vec{v} = O$
 $\Rightarrow (A - \lambda I)^{j_1} \vec{v} = O$
 $\Rightarrow \vec{v} \in N(A - \lambda I)^{j_1}$

Example (Generalised eigenvectors) let
$$A = \begin{bmatrix} -0 & 1 & 3 \\ -2 & 1 & 5 \end{bmatrix}$$
.
Eigenvectors substy $f(R) = det(A-XI) = -\lambda^5 + 8\lambda^2 - 24\lambda + 18$.
Possible roots $= I1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 48$. We get $f(R) = (2-\lambda)(A-3)^2$.
[A=2] gives $N(A-2T) = Span \left\{ \begin{bmatrix} 2\\4\\4 \end{bmatrix} \right\}$ and $N(A-2T)^2 = N(A-2T)$.
This implies $N(A-2T)^5 = N(A-2T)$ $\forall j_3 \downarrow$.
[A=3] gives $N(A-3T)^3 = N(A-2T)^2$. Thus $N(A-3T)^5 = Span \left\{ \begin{bmatrix} 4\\-4\\-4 \end{bmatrix}, \begin{bmatrix} 0\\-4\\-5 \end{bmatrix} \right\}$
and $N(A-3T)^3 = N(A-3T)^2$. Thus $N(A-3T)^5 = N(A-3T)^5$ $\forall j_3 2$.
This gives 1 eigen with $A=2$, 1 eigen with $A=3 \implies 2$ lin, indep.
eigenvectors $\Rightarrow A$ is not diagonalisable. However, there are 3 lin, idep.
generalised eigenvectors.
Our geal: to show that we always get n lin, indep. gen. eigenvectors.
This is hard to preve. We'll need several concepts.
This is hard to preve. We'll need several concepts.
If A is MXn , then $C(A) = span$ of columns of A
 $= Spain \{Ae_1, Ae_2, ..., Ae_n\}$.
Note that $\Im \in C(A)$ if and only if $\Im = X_1Ae_1 + ... + in Ae_n$,
 $S= \Im \in C(A)$ if and only if $\Im = X_1Ae_1 + ... + in Ae_n$,
 $S= \Im \in C(A)$ if and only if $X = X_1Ae_1 + ... + in Ae_n$,
 $A = Spain \{Ae_1, Ae_2, ..., Ae_n\}$.
Note that $\Re = an velake C(A)$ with $C(R)$, the column space
if the RREF, as follows. Suppose $R = E_2 - E_2 E_1 A$. Then
linear conditionalises of columns of R since
 $\sum X_1 RE_1 = Z X_1 (E_1 - E_2E_1 A) E_1 = (E_1 - E_2) Z X_1AE_1$.

If some columns of R are linearly dependent, then
White
$$R_{i_1} + X_2 R \tilde{e}_{i_2} + \dots + X_k R \tilde{e}_{i_k} = 0$$
 with X_i not
all so $Y_i A \tilde{e}_{i_1} + X_2 A \tilde{e}_{i_2} + \dots + X_k A \tilde{e}_{i_k} = 0$ (and vice verse)
Theorem ((alumn space))
(1) Lin. indeq. columns of R correspond to lin. indeq columns of A.
(2) dim $N(A) =$ number of free variables
dim $C(A) =$ number of pivots
So dim $N(A) + dim C(A) =$ number of variables/columns = n.
Proof (0) follows by above. For (2), we rew reduction gives
some pivot variables and some free variables. We have
dim $N(A) =$ number of free variables. We have
dim $N(A) =$ number of free variables. We have
dim $N(A) =$ number of free variables. We have
dim $N(A) =$ number of free variables. We have
dim $N(A) =$ number of free variables.
Also, dim $C(A) =$ dim Span $[A \tilde{e}_{i_1}, ..., R \tilde{e}_{i_n}]$
 $=$ dim span $[A \tilde{e}_{i_n}, ...,$

Proof Let's worry about column spaces. To say
$$\vec{J} \in C(B)$$

is to say $\vec{J} = \vec{Z} \times B\vec{E}_{i}$ and that says $\vec{J} = \vec{B} \times T$. In
our case, $\vec{J} \in \mathcal{M} C(A - \lambda T)^{5} \implies \vec{J} = (A - \lambda T)^{5} \times \vec{X}$
 $\implies A\vec{J} = (A - \lambda T)^{5} + \lambda T (A - \lambda T)^{5} \times \vec{X}$
 $\implies A\vec{J} = (A - \lambda T)^{5} + \lambda (A - \lambda T)^{5} \times \vec{X}$
 $\implies A\vec{J} = (A - \lambda T)^{5} + \lambda (A - \lambda T)^{5} \times \vec{X}$
 $\implies A\vec{J} = (A - \lambda T)^{5} \cdot \vec{X} + \lambda (A - \lambda T)^{5} \times \vec{X}$
 $\implies A\vec{J} = (A - \lambda T)^{5} \cdot \vec{N}$. (2)
Frample (Block diagonalisation) Let $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 0 & 2 \\ 0 & -1 & 2 \end{bmatrix}$
The eigenvalues are $- = \lambda = 1, 1, 2$.
The eigenvectors are $- = \lambda = 1, 1, 2$.
The eigenvectors are $- = \lambda = 1, 1, 2$.
The eigenvectors are $- = \lambda = 1, 1, 2$.
The generalised eigenvectors are $N(A - T)^{2} = Span \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ and $N(A - 2T)^{2} = N(A - 2T)$.
We get 2 gen, eigenv. with $\lambda = 1$ and $1 = \text{eigenv. with } \lambda = 2$.
Thus $N(A - T)^{2} = 2 - \text{dim}$ inv. subspace and $N(A - 2T)^{2} = 1 - \text{dim}$. inv.
We take $B = \begin{bmatrix} V_{1} & V_{2} & V_{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 4 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ and then
iompute $B^{-1}AB = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = - = a$ block diagonal matrix.