1. Find the eigenvalues and the eigenvectors of the matrix

\[A = \begin{bmatrix} 5 & 2 \\ 4 & 3 \end{bmatrix}. \]

2. Is the following matrix diagonalisable? Why or why not?

\[A = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}. \]

3. Find a matrix \(A \) that has \(v_1 \) as an eigenvector with eigenvalue \(\lambda_1 = 2 \) and \(v_2 \) as an eigenvector with eigenvalue \(\lambda_2 = 5 \) when

\[v_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \]

4. Two square matrices \(A, C \) are said to be similar, if \(C = B^{-1}AB \) for some invertible matrix \(B \). Show that similar matrices have the same characteristic polynomial and also the same eigenvalues. Hint: one has \(C - \lambda I = B^{-1}(A - \lambda I)B \).