Linear algebra II Homework #8 solutions

1.	Find an	orthogonal	matrix	B	such	that	В	^{t}AB	is	diagonal	when	
----	---------	------------	--------	---	------	------	---	----------	----	----------	------	--

$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$

The eigenvalues of A are the roots of the characteristic polynomial

$$f(\lambda) = \det(A - \lambda I) = -\lambda^3 + 10\lambda^2 - 27\lambda + 18 = -(\lambda - 1)(\lambda - 3)(\lambda - 6).$$

This gives $\lambda_1 = 1$, $\lambda_2 = 3$ and $\lambda_3 = 6$, while the corresponding eigenvectors are

$$\boldsymbol{v}_1 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} 1\\-2\\1 \end{bmatrix}, \quad \boldsymbol{v}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

Since the eigenvalues are distinct, the eigenvectors are orthogonal to one another. Once we now divide each of them by its length, we obtain the columns of the orthogonal matrix

$$B = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$

2. Suppose that v_1, v_2, \ldots, v_n form an orthonormal basis of \mathbb{R}^n and consider the $n \times n$ matrix $A = v_2 v_1^t$. Show that $A^2 = 0$ and find the Jordan form of A.

Since v_1 is perpendicular to v_2 by assumption, one easily finds that

$$oldsymbol{v}_1^toldsymbol{v}_2=0 \quad \Longrightarrow \quad A^2=oldsymbol{v}_2oldsymbol{v}_1^toldsymbol{v}_2oldsymbol{v}_1^t=0.$$

In particular, $\lambda = 0$ is the only eigenvalue of A and we also have

$$A\boldsymbol{v}_1 = \boldsymbol{v}_2 \boldsymbol{v}_1^t \boldsymbol{v}_1 = \boldsymbol{v}_2, \qquad A\boldsymbol{v}_k = \boldsymbol{v}_2 \boldsymbol{v}_1^t \boldsymbol{v}_k = 0$$

for each integer $k \geq 2$. Since $Av_1 = v_2$ and $Av_2 = 0$, the first two vectors form a Jordan chain of length 2. Thus, the Jordan form contains a 2×2 block with eigenvalue $\lambda = 0$. The remaining blocks correspond to the vectors v_3, \ldots, v_n and they are all 1×1 blocks.

3. Find an orthonormal basis of \mathbb{R}^3 that consists entirely of eigenvectors of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

The eigenvalues of A are the roots of the characteristic polynomial

$$f(\lambda) = \det(A - \lambda I) = -\lambda^3 + 14\lambda^2 = \lambda^2(14 - \lambda),$$

namely $\lambda_1 = \lambda_2 = 0$ and $\lambda_3 = 14$. The corresponding eigenvectors are easily found to be

$$\boldsymbol{v}_1 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} -3\\0\\1 \end{bmatrix}, \quad \boldsymbol{v}_3 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

Note that the first two vectors are not orthogonal to one another. To find an orthogonal basis, we thus resort to the Gram-Schmidt procedure which gives the vectors

$$\boldsymbol{w}_1 = \boldsymbol{v}_1 = \begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix}, \qquad \boldsymbol{w}_2 = \boldsymbol{v}_2 - \frac{\langle \boldsymbol{v}_2, \boldsymbol{w}_1 \rangle}{\langle \boldsymbol{w}_1, \boldsymbol{w}_1 \rangle} \boldsymbol{w}_1 = \begin{bmatrix} -3/5\\ -6/5\\ 1 \end{bmatrix}, \qquad \boldsymbol{w}_3 = \boldsymbol{v}_3 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}.$$

Once we now divide each of these vectors by its length, we get the orthonormal basis

$$\boldsymbol{u}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \qquad \boldsymbol{u}_2 = \frac{1}{\sqrt{70}} \begin{bmatrix} -3\\-6\\5 \end{bmatrix}, \qquad \boldsymbol{u}_3 = \frac{1}{\sqrt{14}} \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

4. Find an orthogonal 3×3 matrix whose first two columns are $\boldsymbol{v}_1 = \begin{bmatrix} \cos x \cdot \cos y \\ \sin x \\ \cos x \cdot \sin y \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} -\sin y \\ 0 \\ \cos y \end{bmatrix}, \quad x, y \in \mathbb{R}.$

It is easy to check that v_1, v_2 are orthogonal vectors of unit length, namely

$$v_1^t v_2 = -\cos x \cdot \cos y \cdot \sin y + \cos x \cdot \cos y \cdot \sin y = 0,$$

|| v_1 ||² = cos² x \cdot cos² y + cos² x \cdot sin² y + sin² x = cos² x + sin² x = 1,
|| v_2 ||² = sin² y + cos² y = 1.

The third column is perpendicular to each of the first two columns, so it is parallel to

$$\boldsymbol{v}_3 = \boldsymbol{v}_1 \times \boldsymbol{v}_2 = \begin{bmatrix} \cos x \cdot \cos y \\ \sin x \\ \cos x \cdot \sin y \end{bmatrix} \times \begin{bmatrix} -\sin y \\ 0 \\ \cos y \end{bmatrix} = \begin{bmatrix} \sin x \cdot \cos y \\ -\cos x \\ \sin x \cdot \sin y \end{bmatrix}$$

This is actually a unit vector itself, so the third column could be either v_3 or $-v_3$.